

Welcome to OpenSpiel’s documentation!

Getting started

	What is OpenSpiel?

	Installation
	Python-only installation via pip

	Installation from Source

	Summary

	Installing via Docker

	Running the first examples

	Detailed steps

Core OpenSpiel

	First examples

	Concepts
	The tree representation

	Loading a game
	Creating sequential games from simultaneous games

	Playing a trajectory

	OpenSpiel Core API Reference
	Core Functions

	State methods

	Game methods

	Available algorithms

	Available games
	Details

Evaluation

	Alpha-Rank
	Importing the Alpha-Rank module

	Running Alpha-Rank on various games

	Visualizing and reporting results

Julia OpenSpiel

	OpenSpiel on Julia
	Install

	Known Problems

	Example

	Q&A

AlphaZero

	AlphaZero
	Background

	Overview:

	Usage:

Developer guide

	The code structure

	C++ and Python implementations.

	Adding a game

	Conditional dependencies

	Debugging tools

	Adding Game-Specific Functionality

	Language APIs

	Guidelines

	Support expectations
	Bugs

	Pull requests

	Roadmap and Call for Contributions

Using OpenSpiel as a C++ Library

	Using OpenSpiel as a C++ Library
	Install Dependencies

	Compiling OpenSpiel as a Shared Library

	Compiling and Running the Example

Extra information

	Authors
	OpenSpiel contributors

	OpenSpiel with Swift for Tensorflow (now removed)

	External contributors

What is OpenSpiel?

OpenSpiel is a collection of environments and algorithms for research in general
reinforcement learning and search/planning in games. OpenSpiel also includes
tools to analyze learning dynamics and other common evaluation metrics. Games
are represented as procedural extensive-form games, with some natural
extensions.

Open Spiel supports

	Single and multi-player games

	Fully observable (via observations) and imperfect information games (via
information states and observations)

	Stochasticity (via explicit chance nodes mostly, even though implicit
stochasticity is partially supported)

	n-player normal-form “one-shot” games and (2-player) matrix games

	Sequential and simultaneous move games

	Zero-sum, general-sum, and cooperative (identical payoff) games

Multi-language support

	C++17

	Python 3

The games and utility functions (e.g. exploitability computation) are written in
C++. These are also available using
pybind11 [https://pybind11.readthedocs.io/en/stable/] Python bindings.

The methods names are in CamelCase in C++ and snake_case in Python (e.g.
state.ApplyAction in C++ will be state.apply_action in Python). See the
pybind11 definition in open_spiel/python/pybind11/pyspiel.cc [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/pybind11/pyspiel.cc]
for the full mapping between names.

For algorithms, many are written in both languages, even if some are only
available from Python.

Platforms

OpenSpiel has been tested on Linux (Ubuntu and Debian), MacOS. There is limited
support for on Windows 10.

Visualization of games

There is a basic visualizer based on graphviz, see
open_spiel/python/examples/treeviz_example.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/treeviz_example.py].

There is an interactive viewer for OpenSpiel games called
SpielViz [https://github.com/michalsustr/spielviz].

Installation

Python-only installation via pip

If you plan to only use the Python API, then the easiest way to install
OpenSpiel is to use pip. On MacOS or Linux, simply run:

python3 -m pip install open_spiel

The binary distribution is new as of OpenSpiel 1.0.0, and is only supported on
x86_64 architectures. If you encounter any problems, you can still install
OpenSpiel via pip from source (see below), but please open an issue to let us
know about the problem.

Python-only installation via pip (from source).

If the binary distribution is not an option, you can also build OpenSpiel via
pip from source. CMake, Clang and Python 3 development files are required to
build the Python extension. Note that we recommend Clang but g++ >= 9.2 should
also work.

E.g. on Ubuntu or Debian:

Check to see if you have the necessary tools for building OpenSpiel:
cmake --version # Must be >= 3.17
clang++ --version # Must be >= 7.0.0
python3-config --help

If not, run this line to install them.
On older Linux distros, the package might be called clang-9 or clang-10
sudo apt-get install cmake clang python3-dev

On older Linux distros, the versions may be too old.
E.g. on Ubuntu 18.04, there are a few extra steps:
sudo apt-get install clang-10
pip3 install cmake # You might need to relogin to get the new CMake version
export CXX=clang++-10

Recommended: Install pip dependencies and run under virtualenv.
sudo apt-get install virtualenv python3-virtualenv
virtualenv -p python3 venv
source venv/bin/activate

Finally, install OpenSpiel and its dependencies:
python3 -m pip install --upgrade setuptools pip
python3 -m pip install --no-binary=:open_spiel: open_spiel

To exit the virtual env
deactivate

IMPORTANT NOTE. If the build fails, please first make sure you have the
required versions of the tools above and that you followed the recommended
option. Then, open an issue: https://github.com/deepmind/open_spiel/issues

Note that the build could take several minutes.

On MacOS, you can install the dependencies via brew install cmake python3. For
clang, you need to install or upgrade XCode and install the command-line
developer tools.

Installation from Source

The instructions here are for Linux and MacOS. For installation on Windows, see
these separate installation instructions. On Linux, we recommend
Ubuntu 22.04, Debian 10, or later versions. On MacOS, we recommend XCode 11 or
newer. For the Python API: our tests run using Python versions 3.7 - 3.10. If
you encounter any problems on other setups, please let us know by opening an
issue.

Currently there are three installation methods:

	building from the source code and editing PYTHONPATH.

	using pip install.

	installing via Docker [https://www.docker.com].

Summary

In a nutshell:

./install.sh # Needed to run once and when major changes are released.
./open_spiel/scripts/build_and_run_tests.sh # Run this every-time you need to rebuild.

	(Optional) Configure
Conditional Dependencies.

	Install system packages (e.g. cmake) and download some dependencies. Only
needs to be run once or if you enable some new conditional dependencies.

./install.sh

	Install your Python dependencies, e.g. in
Python 3 using
virtualenv [https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/]:

virtualenv -p python3 venv
source venv/bin/activate

Use deactivate to quit the virtual environment.

pip should be installed once and upgraded:

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
Install pip deps as your user. Do not use the system's pip.
python3 get-pip.py
pip3 install --upgrade pip
pip3 install --upgrade setuptools testresources

Additionally, if you intend to use one of the
optional Python dependencies (see open_spiel/scripts/install.sh [https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh]), you
must manually install and/or upgrade them, e.g.: bash pip install --upgrade torch==x.xx.x jax==x.x.x where x.xx.x should be the desired version
numbers (which can be found at the link above).

	This sections differs depending on the installation procedure:

Building and testing from source

python3 -m pip install -r requirements.txt
./open_spiel/scripts/build_and_run_tests.sh

Building and testing using PIP

python3 -m pip install .

Optionally, use pip install -e to install in
editable mode [https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs],
which will allow you to skip this pip install step if you edit any Python
source files. If you edit any C++ files, you will have to rerun the install
command.

	Only when building from source:

For the python modules in open_spiel.
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>
For the Python bindings of Pyspiel
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>/build/python

to ./venv/bin/activate or your ~/.bashrc to be able to import OpenSpiel
from anywhere.

To make sure OpenSpiel works on the default configurations, we do use the
python3 command and not python (which still defaults to Python 2 on modern
Linux versions).

Installing via Docker

Please note that we don’t regularly test the Docker installation. As such, it
may not work at any given time. If you encounter a problem, please
open an issue [https://github.com/deepmind/open_spiel/issues].

Option 1 (Basic, 3.13GB):

docker build --target base -t openspiel -f Dockerfile.base .

Option 2 (Slim, 2.26GB):

docker build --target python-slim -t openspiel -f Dockerfile.base .

If you are only interested in developing in Python, use the second image. You
can navigate through the runtime of the container (after the build step) with:

docker run -it --entrypoint /bin/bash openspiel

Finally you can run examples using:

docker run openspiel python3 python/examples/matrix_game_example.py
docker run openspiel python3 python/examples/example.py

Option 3 (Jupyter Notebook):

Installs OpenSpiel with an additional Jupyter Notebook environment.

docker build -t openspiel-notebook -f Dockerfile.jupyter --rm .
docker run -it --rm -p 8888:8888 openspiel-notebook

More info: https://jupyter-docker-stacks.readthedocs.io/en/latest/

Running the first examples

In the build directory, running examples/example will prints out a list of
registered games and the usage. Now, let’s play game of Tic-Tac-Toe with uniform
random players:

examples/example --game=tic_tac_toe

Once the proper Python paths are set, from the main directory (one above
build), try these out:

Similar to the C++ example:
python3 open_spiel/python/examples/example.py --game_string=breakthrough

Play a game against a random or MCTS bot:
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --player2=random
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --player2=mcts

Detailed steps

Configuring conditional dependencies

Conditional dependencies are configured using environment variables, e.g.

export OPEN_SPIEL_BUILD_WITH_HANABI=ON

install.sh may need to be rerun after enabling new conditional dependencies.

See open_spiel/scripts/global_variables.sh [https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/global_variables.sh] for the full list
of conditional dependencies.

See also the Developer Guide.

Installing system-wide dependencies

See open_spiel/scripts/install.sh [https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh] for the required packages and cloned
repositories.

Installing Python dependencies

Using a virtualenv to install python dependencies is highly recommended. For
more information see:
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Required dependencies

Install required dependencies (Python 3):

Ubuntu 22.04 and newer:
python3 -m venv ./venv
source venv/bin/activate
python3 -m pip install -r requirements.txt
Older than Ubuntu 22.04:
virtualenv -p python3 venv
source venv/bin/activate
python3 -m pip install -r requirements.txt

Alternatively, although not recommended, you can install the Python dependencies
system-wide with:

python3 -m pip install --upgrade -r requirements.txt

Optional dependencies

Additionally, if you intend to use one of the optional Python dependencies (see open_spiel/scripts/install.sh [https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh]), you must manually install and/or upgrade them. The installation scripts will not install or upgrade these dependencies. e.g.:

python3 -m pip install --upgrade torch==x.xx.x jax==x.x.x

where x.xx.x should be the desired version numbers (which can be found at the
link above).

Building and running tests

Make sure that the virtual environment is still activated.

By default, Clang C++ compiler is used (and potentially installed by
open_spiel/scripts/install.sh [https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh]).

Build and run tests (Python 3):

mkdir build
cd build
CXX=clang++ cmake -DPython3_EXECUTABLE=$(which python3) -DCMAKE_CXX_COMPILER=${CXX} ../open_spiel
make -j$(nproc)
ctest -j$(nproc)

The CMake variable Python3_EXECUTABLE is used to specify the Python
interpreter. If the variable is not set, CMake’s FindPython3 module will prefer
the latest version installed. Note, Python >= 3.7 is required.

One can run an example of a game running (in the build/ folder):

./examples/example --game=tic_tac_toe

Setting Your PYTHONPATH environment variable

To be able to import the Python code (both the C++ binding pyspiel and the
rest) from any location, you will need to add to your PYTHONPATH the root
directory and the open_spiel directory.

When using a virtualenv, the following should be added to
<virtualenv>/bin/activate. For a system-wide install, ddd it in your .bashrc
or .profile.

For the python modules in open_spiel.
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>
For the Python bindings of Pyspiel
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>/build/python

First examples

One can run an example of a game running (in the build/ folder):

./examples/example --game=tic_tac_toe

Similar examples using the Python API (run from one above build):

Similar to the C++ example:
python3 open_spiel/python/examples/example.py --game_string=breakthrough

Play a game against a random or MCTS bot:
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --player2=random
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --player2=mcts

Concepts

The following documentation describes the high-level concepts. Refer to the code
comments for specific API descriptions.

Note that, in English, the word “game” is used for both the description of the
rules (e.g. the game of chess) and for a specific instance of a playthrough
(e.g. “we played a game of chess yesterday”). We will be using “playthrough” or
“trajectory” to refer to the second concept.

The methods names are in CamelCase in C++ and snake_case in Python without
any other difference (e.g. state.ApplyAction in C++ will be
state.apply_action in Python).

The tree representation

There are mainly 2 concepts to know about (defined in
open_spiel/spiel.h [https://github.com/deepmind/open_spiel/blob/master/open_spiel/spiel.h]):

	A Game object contains the high level description for a game (e.g. whether
it is simultaneous or sequential, the number of players, the maximum and
minimum scores).

	A State, which describe a specifics point (e.g. a specific board position
in chess, a specific set of player cards, public cards and past bets in
Poker) within a trajectory.

All possible trajectories in a game are represented as a tree. In this tree, a
node is a State and is associated to a specific history of moves for all
players. Transitions are actions taken by players (in case of a simultaneous
node, the transition is composed of the actions for all players).

Note that in most games, we deal with chance (i.e. any source of randomness)
using a an explicit player (the “chance” player, which has id
kChancePlayerId). For example, in Poker, the root state would just be the
players without any cards, and the first transitions will be chance nodes to
deal the cards to the players (in practice once card is dealt per transition).

See spiel.h for the full API description. For example,
game.NewInitialState() will return the root State. Then,
state.LegalActions() can be used to get the possible legal actions and
state.ApplyAction(action) can be used to update state in place to play the
given action (use state.Child(action) to create a new state and apply the
action to it).

Loading a game

The games are all implemented in C++ in open_spiel/games [https://github.com/deepmind/open_spiel/blob/master/open_spiel/games].
Available games names can be listed using RegisteredNames().

A game can be created from its name and its arguments (which usually have
defaults). There are 2 ways to create a game:

	Using the game name and a structured GameParameters object (which, in
Python, is a dictionary from argument name to compatible types (int, bool,
str or a further dict). e.g. {"players": 3} with LoadGame.

	Using a string representation such as kuhn_poker(players=3), giving
LoadGame(kuhn_poker(players=3)). See open_spiel/game_parameters.cc for
the exact syntax.

Creating sequential games from simultaneous games

It is possible to apply generic game transformations (see
open_spiel/game_transforms/ [https://github.com/deepmind/open_spiel/blob/master/open_spiel/game_transforms/]) such as loading an n-players
simultaneous games into an equivalent turn-based game where simultaneous moves
are encoded as n turns.

One can use LoadGameAsTurnBased(game), or use the string representation, such
as
turn_based_simultaneous_game(game=goofspiel(imp_info=True,num_cards=4,points_order=descending)).

Playing a trajectory

Here are for example the Python code to play one trajectory:

import random
import pyspiel
import numpy as np

game = pyspiel.load_game("kuhn_poker")
state = game.new_initial_state()
while not state.is_terminal():
 legal_actions = state.legal_actions()
 if state.is_chance_node():
 # Sample a chance event outcome.
 outcomes_with_probs = state.chance_outcomes()
 action_list, prob_list = zip(*outcomes_with_probs)
 action = np.random.choice(action_list, p=prob_list)
 state.apply_action(action)
 else:
 # The algorithm can pick an action based on an observation (fully observable
 # games) or an information state (information available for that player)
 # We arbitrarily select the first available action as an example.
 action = legal_actions[0]
 state.apply_action(action)

See open_spiel/python/examples/example.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/example.py] for a more
thorough example that covers more use of the core API.

See open_spiel/python/examples/playthrough.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/playthrough.py] (and
open_spiel/python/algorithms/generate_playthrough.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/generate_playthrough.py]) for an
richer example generating a playthrough and printing all available information.

In C++, see open_spiel/examples/example.cc [https://github.com/deepmind/open_spiel/blob/master/open_spiel/examples/example.cc] which generates
random trajectories.

OpenSpiel Core API Reference

OpenSpiel consists of several core functions and classes. This page acts as a
helpful reminder of how to use the main functionality of OpenSpiel.

Most of the functions are described and illustrated via Python syntax and
examples, and there are pointers to the corresponding C++ functions.

Disclaimer: This is meant as a guide to facilitate OpenSpiel development
in Python. However,
spiel.h [https://github.com/deepmind/open_spiel/blob/master/open_spiel/spiel.h]
remains the single source of truth for documentation on the core API.

Core Functions

	Method
	Python
	C++
	Description

	deserialize_game_and_state(serialized_data: string)
	Python
	C++
	Returns a tuple of (game, state) reconstructed from the serialized object data.

	load_game(game_string: str)
	Python
	C++
	Returns a game object for the specified game string.

	load_game(game_string: str, parameters: Dict[str, Any])
	Python
	C++
	Returns a game object for the specified game string and parameter values.

	registered_names()
	Python
	C++
	Returns a list of all short names of games in the library.

	serialize_game_and_state(game: pyspiel.Game, state: pyspiel.State)
	Python
	C++
	Returns a string representation of the state and game that created it.

State methods

	Method
	Python
	C++
	Description

	action_to_string(player: int, action: int)
	Python
	C++
	Returns a string representation of the specified player's action.

	apply_action(action: int)
	Python
	C++
	Applies the specified action to the state.

	apply_actions(actions: List[int])
	Python
	C++
	Applies the specified joint action (action for each player) to the state.

	chance_outcomes()
	Python
	C++
	Returns the a list of (action, prob) tuples representing the chance outcome distribution.

	current_player()
	Python
	C++
	Returns the player ID of the acting player.

	history()
	Python
	C++
	Returns the sequence of actions taken by all players since the start of the game.

	information_state_string()
	Python
	C++
	Returns a string representing the information state for the current player.

	information_state_string(player: int)
	Python
	C++
	Returns a string representing the information state for the specified player.

	information_state_tensor()
	Python
	C++
	Returns a list of floats representing the information state for the current player.

	information_state_tensor(player: int)
	Python
	C++
	Returns a list of floats representing the information state for the specified player.

	is_chance_node()
	Python
	C++
	Returns True if the state represents a chance node, False otherwise.

	is_simultaneous_node()
	Python
	C++
	Returns True if the state represents a simultaneous player node, False otherwise.

	is_terminal()
	Python
	C++
	Returns True if the state is terminal (game has finished), False otherwise.

	legal_actions()
	Python
	C++
	Returns the list of legal actions for the current player.

	legal_actions(player: int)
	Python
	C++
	Returns the list of legal actions for the specified player.

	observation_string()
	Python
	C++
	Returns a string representing the observation for the current player.

	observation_string(player: int)
	Python
	C++
	Returns a string representing the observation for the specified player.

	observation_tensor()
	Python
	C++
	Returns a list of floats representing the observation for the current player.

	observation_tensor(player: int)
	Python
	C++
	Returns a list of floats representing the observation for the specified player.

	returns()
	Python
	C++
	Returns the list of returns (cumulated reward from the start of the game): one value per player.

	rewards()
	Python
	C++
	Returns the list of intermediate rewards (rewards obtained since the last time the player acted): one value per player.

	serialize()
	Python
	C++
	Returns a string representation of the state which can be used to reconstruct the state from the game.

Game methods

	Method
	Python
	C++
	Description

	action_to_string(player: int, action: int)
	Python
	C++
	Returns a (state-independent) string representation of the specified player's action.

	deserialize_state(serialized_data: str)
	Python
	C++
	Reconstructs the state from the serialized state string.

	information_state_tensor_shape()
	Python
	C++
	Shape that the information state tensor should be perceived as.

	information_state_tensor_size()
	Python
	C++
	Size of the list (number of values) returned by the state's information state tensor function.

	max_chance_outcomes()
	Python
	C++
	The maximum number of distinct chance outcomes for chance nodes in the game.

	max_game_length()
	Python
	C++
	The maximum length of any one game (in terms of number of decision nodes visited in the game tree).

	max_utility()
	Python
	C++
	The maximum achievable utility (return) in over any playing (episode) of the game.

	min_utility()
	Python
	C++
	The minimum achievable utility (return) in over any playing (episode) of the game.

	new_initial_state()
	Python
	C++
	Returns a new initial state of the game (note: which might be a chance node).

	num_distinct_actions()
	Python
	C++
	Returns the number of (state-independent) distinct actions in the game.

	observation_tensor_shape()
	Python
	C++
	Shape that the observation tensor should be perceived as.

	observation_tensor_size()
	Python
	C++
	Size of the list (number of values) returned by the state's observation tensor function.

Available algorithms

[image: _images/green_circ10.png]: thoroughly-tested. In many cases,
we verified against known values and/or reproduced results from papers.

~: implemented but lightly tested.

X: known problems; please see github issues.

	Algorithms
	Category
	Reference
	Status

	Information Set Monte Carlo Tree Search (IS-MCTS)
	Search
	Cowley et al. '12
	~

	Max^n
	Search
	Luckhart & Irani '86
	~

	Minimax (and Alpha-Beta) Search
	Search
	Wikipedia1, Wikipedia2, Knuth and Moore '75
	[image:]

	Monte Carlo Tree Search
	Search
	Wikipedia, UCT paper, Coulom '06, Cowling et al. survey
	[image:]

	Perfect Information Monte Carlo (PIMC)
	Search
	Long et al. '10
	~

	Lemke-Howson (via nashpy)
	Opt.
	Wikipedia, Shoham & Leyton-Brown '09
	[image:]

	ADIDAS
	Opt.
	Gemp et al '22
	~

	Least Core via Linear Programming
	Opt.
	Yan & Procaccia '21
	~

	Least Core via Saddle-Point (Lagrangian) Programming
	Opt.
	Gemp et al '24
	~

	Sequence-form linear programming
	Opt.
	Koller, Megiddo, and von Stengel '94, Shoham & Leyton-Brown '09

 Available games

Available games

🟢: thoroughly-tested. In many cases, we verified against known values and/or reproduced results from papers.

🔶: implemented but lightly tested.

❌: known issues (see notes below and code for details).

	Status
	Game

	🔶
	2048

	🔶
	Amazons

	🔶
	Atari

	🟢
	Backgammon

	🔶
	Bargaining

	🔶
	Battleship

	🔶
	Blackjack

	🔶
	Block Dominoes

	🟢
	Breakthrough

	🟢
	Bridge

	🟢
	(Uncontested) Bridge bidding

	🔶
	Catch

	🔶
	Checkers

	🔶
	Cliff Walking

	🔶
	Clobber

	🔶
	Coin Game

	🔶
	Colored Trails

	🟢
	Connect Four

	🔶
	Cooperative Box-Pushing

	🟢
	Chess

	🔶
	Crazy Eights

	🔶
	Dark Hex

	🔶
	Deep Sea

	🟢
	Dots and Boxes

	🔶
	Dou Dizhu

	🔶
	Euchre

	🟢
	First-price Sealed-Bid Auction

	🟢
	Gin Rummy

	🟢
	Go

	🟢
	Goofspiel

	🟢
	Hanabi

	🟢
	Havannah

	🟢
	Hearts

	🔶
	Hex

	🔶
	Kriegspiel

	🟢
	Kuhn poker

	🔶
	Laser Tag

	🟢
	Leduc poker

	🔶
	Lewis Signaling

	🟢
	Liar's Dice

	🔶
	Liar's Poker

	🔶
	Mensch ärgere Dich nicht

	🔶
	Mancala

	🔶
	Markov Soccer

	🟢
	Matching Pennies (Three-player)

	🟢
	Mean Field Game : garnet

	🟢
	Mean Field Game : crowd modelling

	🟢
	Mean Field Game : crowd modelling 2d

	🟢
	Mean Field Game : linear quadratic

	🟢
	Mean Field Game : predator prey

	🟢
	Mean Field Game : routing

	🔶
	Morpion Solitaire (4D)

	🟢
	Negotiation

	🔶
	Nim

	🔶
	Nine men's morris

	🔶
	Oh Hell

	🟢
	Oshi-Zumo

	🟢
	Oware

	🔶
	Pathfinding

	🟢
	Pentago

	🔶
	Phantom Go

	🔶
	Phantom Tic-Tac-Toe

	🟢
	Pig

	🟢
	Prisoner's Dilemma

	❌
	Poker (Hold 'em)

	❌
	Quoridor

	❌
	Reconnaissance Blind Chess

	🟢
	Routing game

	🔶
	Sheriff

	🔶
	Slovenian Tarok

	🔶
	Skat (simplified bidding)

	🔶
	Solitaire (K+)

	🟢
	Tic-Tac-Toe

	🟢
	Tiny Bridge

	🟢
	Tiny Hanabi

	🟢
	Trade Comm

	🔶
	Ultimate Tic-Tac-Toe

	🔶
	Weighted Voting Games

	🟢
	Y

Details

2048

	A single player game where player aims to create a 2048 tile by merging
other tiles.

	Numbers on a grid.

	Modern game.

	Non-deterministic.

	Perfect information.

	1 player.

	Github [https://github.com/gabrielecirulli/2048]

Amazons

	Move pieces on a board trying to block opponents from moving.

	Pieces on a grid.

	Modern game.

	Deterministic.

	Perfect information.

	2 players.

	Wikipedia [https://en.wikipedia.org/wiki/Game_of_the_Amazons]

Atari

	Agent plays classic games from
Gym’s Atari Environments [https://www.gymlibrary.dev/environments/atari/],
such as Breakout.

	Single player.

	Most games are non-deterministic.

	Perfect information.

Backgammon

	Players move their pieces through the board based on the rolls of dice.

	Idiosyncratic format.

	Traditional game.

	Non-deterministic.

	Perfect information.

	2 players.

	Wikipedia [https://en.wikipedia.org/wiki/Backgammon]

Bargaining

	Agents negotiate for items in a pool with different (hidden) valuations.

	Research game.

	Non-deterministic (randomized pool and valuations).

	Imperfect information.

	2 players.

	Lewis et al. ‘17 [https://arxiv.org/abs/1706.05125],
DeVault et al. ‘15 [https://www.aaai.org/ocs/index.php/SSS/SSS15/paper/viewFile/10335/10100]

Battleship

	Players place ships and shoot at each other in turns.

	Pieces on a board.

	Traditional game.

	Deterministic.

	Imperfect information.

	2 players.

	Good for correlated equilibria.

	Farina et al. ‘19, Correlation in Extensive-Form Games: Saddle-Point
Formulation and
Benchmarks [https://papers.nips.cc/paper/9122-correlation-in-extensive-form-games-saddle-point-formulation-and-benchmarks.pdf].
Based on the original game
(wikipedia) [https://en.wikipedia.org/wiki/Battleship_(game)]

Blackjack

	Simplified version of blackjack, with only HIT/STAND moves.

	Traditional game.

	Non-deterministic.

	Imperfect information.

	1 player.

	Wikipedia [https://en.wikipedia.org/wiki/Blackjack]

Block Dominoes

	Most simple version of dominoes.

	Consists of 28 tiles, featuring all combinations of spot counts (also called
pips or dots) between zero and six.

	Traditional game.

	Non-deterministic.

	Imperfect information.

	2 players.

	Wikipedia

Breakthrough

	Simplified chess using only pawns.

	Pieces on a grid.

	Modern game.

	Deterministic.

	Perfect information.

	2 players.

	Wikipedia [https://en.wikipedia.org/wiki/Breakthrough_(board_game)]

Bridge

	A card game where players compete in pairs.

	Card game.

	Traditional game.

	Non-deterministic.

	Imperfect information.

	4 players.

	Wikipedia [https://en.wikipedia.org/wiki/Contract_bridge]

(Uncontested) Bridge bidding

	Players score points by forming specific sets with the cards in their hands.

	Card game.

	Research game.

	Non-deterministic.

	Imperfect information.

	2 players.

	Wikipedia [https://en.wikipedia.org/wiki/Contract_bridge]

Catch

	Agent must move horizontally to ‘catch’ a descending ball. Designed to test
basic learning.

	Agent on a grid.

	Research game.

	Non-deterministic.

	Perfect information.

	1 players.

	Mnih et al. 2014, Recurrent Models of Visual Attention [https://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf],Osband et al ‘19, Behaviour Suite for Reinforcement Learning, Appendix A [https://arxiv.org/abs/1908.03568]

 α-Rank

α-Rank

OpenSpiel now supports using Alpha-Rank
(“α-Rank: Multi-Agent Evaluation by Evolution”, 2019 [https://www.nature.com/articles/s41598-019-45619-9])
for both single-population (symmetric) and multi-population games. Specifically,
games can be specified via payoff tables (or tensors for the >2 players case) as
well as Heuristic Payoff Tables (HPTs).

The following presents several typical use cases for Alpha-Rank. For an example
complete python script, refer to
open_spiel/python/egt/examples/alpharank_example.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/egt/examples/alpharank_example.py].

Importing the Alpha-Rank module

from open_spiel.python.egt import alpharank
from open_spiel.python.egt import alpharank_visualizer

Running Alpha-Rank on various games

Example: symmetric 2-player game rankings

In this example, we run Alpha-Rank on a symmetric 2-player game
(Rock-Paper-Scissors), computing and outputting the rankings in a tabular
format. We demonstrate also the conversion of standard payoff tables to
Heuristic Payoff Tables (HPTs), as both are supported by the ranking code.

Load the game
game = pyspiel.load_matrix_game("matrix_rps")
payoff_tables = utils.game_payoffs_array(game)

Convert to heuristic payoff tables
payoff_tables= [heuristic_payoff_table.from_matrix_game(payoff_tables[0]),
 heuristic_payoff_table.from_matrix_game(payoff_tables[1].T)]

Check if the game is symmetric (i.e., players have identical strategy sets
and payoff tables) and return only a single-player’s payoff table if so.
This ensures Alpha-Rank automatically computes rankings based on the
single-population dynamics.
_, payoff_tables = utils.is_symmetric_matrix_game(payoff_tables)

Compute Alpha-Rank
(rhos, rho_m, pi, num_profiles, num_strats_per_population) = alpharank.compute(
 payoff_tables, alpha=1e2)

Report results
alpharank.print_results(payoff_tables, payoffs_are_hpt_format, pi=pi)

Output

Agent Rank Score
----- ---- -----
0 1 0.33
1 1 0.33
2 1 0.33

Example: multi-population game rankings

The next example demonstrates computing Alpha-Rank on an asymmetric 3-player
meta-game, constructed by computing payoffs for Kuhn poker agents trained via
extensive-form fictitious play (XFP). Here we use a helper function,
compute_and_report_alpharank, which internally conducts the pre-processing and
visualization shown in the previous example.

Load the game
payoff_tables = alpharank_example.get_kuhn_poker_data(num_players=3)

Helper function for computing & reporting Alpha-Rank outputs
alpharank.compute_and_report_alpharank(payoff_tables, alpha=1e2)

Output

Agent Rank Score
----- ---- -----
(2,3,3) 1 0.22
(3,3,3) 2 0.14
(3,2,3) 3 0.12
(2,2,3) 4 0.09
(3,1,3) 5 0.08
(2,1,3) 6 0.05
(1,2,3) 7 0.04
(2,3,1) 8 0.02
...

[image: _images/example_multi_population_game_rankings.png]

Visualizing and reporting results

This section provides details on various methods used for reporting the final
Alpha-Rank results.

Basic Ranking Outputs

The final rankings computed can be printed in a tabular manner using the
following interface:

alpharank.print_results(payoff_tables, payoffs_are_hpt_format, pi=pi)

Output

Agent Rank Score
----- ---- -----
0 1 0.33
1 1 0.33
2 1 0.33

Markov Chain Visualization

One may visualize the Alpha-Rank Markov transition matrix as follows:

m_network_plotter = alpharank_visualizer.NetworkPlot(payoff_tables, rhos,
 rho_m, pi,strat_labels,
 num_top_profiles=8)
m_network_plotter.compute_and_draw_network()

Output

[image: _images/markov_chain_visualization.png]

Alpha-sweep plots

One may choose to conduct a sweep over the ranking-intensity parameter, alpha
(as opposed to choosing a fixed alpha). This is, in general, useful for general
games where bounds on payoffs may be unknown, and where the ranking computed by
Alpha-Rank should use a sufficiently high value of alpha (to ensure
correspondence to the underlying Markov-Conley chain solution concept). In such
cases, the following interface can be used to both visualize the sweep and
obtain the final rankings computed:

alpharank.sweep_pi_vs_alpha(payoff_tables, visualize=True)

Output

[image: _images/alpha_sweep_plots.png]

 Julia OpenSpiel

Julia OpenSpiel

We also provide a Julia wrapper for the OpenSpiel project. Most APIs are aligned
with those in Python (some are extended to accept AbstractArray and/or keyword
arguments for convenience). See spiel.h for the full API description.

Install

For general usage, you can install this package in the Julia REPL with
] add OpenSpiel. Note that this method only supports the Linux platform and
ACPC is not included. For developers, you need to follow the instructions bellow
to install this package:

	Install Julia and dependencies. Edit
open_spiel/scripts/global_variables.sh and set
OPEN_SPIELOPEN_SPIEL_BUILD_WITH_JULIA=ON (you may also turn on other
options as you wish). Then run ./install.sh. If you already have Julia
installed on your system, make sure that it is visible in your terminal and
its version is v1.3 or later. Otherwise, Julia v1.3.1 will be automatically
installed in your home dir and a soft link will be created at
/usr/local/bin/julia.

	Build and run tests

./open_spiel/scripts/build_and_run_tests.sh

	Install] dev ./open_spiel/julia (run in Julia REPL).

Known Problems

	There’s a problem when building this package on Mac with XCode v11.4 or
above (see discussions
here [https://github.com/deepmind/open_spiel/pull/187#issuecomment-616540881]).
To fix it, you need to install the latest libcxxwrap by following the
instructions
here [https://github.com/JuliaInterop/libcxxwrap-julia#building-libcxxwrap-julia]
after running ./install.sh. Then make sure that the result of julia --project=./open_spiel/julia -e 'using CxxWrap; print(CxxWrap.prefix_path())' points to the newly built libcxxwrap. After
that, build and install this package as stated above.

Example

Here we demonstrate how to use the Julia API to play one game:

using OpenSpiel

Here we need the StatsBase package for weighted sampling
using Pkg
Pkg.add("StatsBase")
using StatsBase

function run_once(name)
 game = load_game(name)
 state = new_initial_state(game)
 println("Initial state of game[$(name)] is:\n$(state)")

 while !is_terminal(state)
 if is_chance_node(state)
 outcomes_with_probs = chance_outcomes(state)
 println("Chance node, got $(length(outcomes_with_probs)) outcomes")
 actions, probs = zip(outcomes_with_probs...)
 action = actions[sample(weights(collect(probs)))]
 println("Sampled outcome: $(action_to_string(state, action))")
 apply_action(state, action)
 elseif is_simultaneous_node(state)
 chosen_actions = [rand(legal_actions(state, pid-1)) for pid in 1:num_players(game)] # in Julia, indices start at 1
 println("Chosen actions: $([action_to_string(state, pid-1, action) for (pid, action) in enumerate(chosen_actions)])")
 apply_action(state, chosen_actions)
 else
 action = rand(legal_actions(state))
 println("Player $(current_player(state)) randomly sampled action: $(action_to_string(state, action))")
 apply_action(state, action)
 end
 println(state)
 end
 rts = returns(state)
 for pid in 1:num_players(game)
 println("Utility for player $(pid-1) is $(rts[pid])")
 end
end

run_once("tic_tac_toe")
run_once("kuhn_poker")
run_once("goofspiel(imp_info=True,num_cards=4,points_order=descending)")

Q&A

	What is StdVector?

StdVector is introduced in
CxxWrap.jl [https://github.com/JuliaInterop/CxxWrap.jl] recently. It is a
wrapper of std::vector in the C++ side. Since that it is a subtype of
AbstractVector, most functions should just work out of the box.

	0-based or 1-based?

As this package is a low-level wrapper of OpenSpiel C++, most APIs are
zero-based: for instance, the Player id starts from zero. But note that
some bridge types, like StdVector, implicitly convert between indexing
conventions, so APIs that use StdVector are one-based.

	I can’t find the xxx function/type in the Julia wrapper/The program exits
unexpectedly.

Although most of the functions and types should be exported, there is still
a chance that some APIs are not well tested. So if you encounter any error,
please do not hesitate to create an issue.

 AlphaZero

AlphaZero

OpenSpiel includes two implementations of AlphaZero, one based on Tensorflow (in
Python). The other based on C++ LibTorch. This document covers mostly the
TF-based implementation and common components. For the Libtorch-based
implementation,
see here [https://github.com/deepmind/open_spiel/tree/master/open_spiel/algorithms/alpha_zero_torch].

Disclaimer: this is not the code that was used for the Go challenge matches
or the AlphaZero paper results. It is a re-implementation for illustrative
purposes, and although it can handle games like Connect Four, it is not designed
to scale to superhuman performance in Go or Chess.

Background

AlphaZero is an algorithm for training an agent to play perfect information
games from pure self-play. It uses Monte Carlo Tree Search (MCTS) with the prior
and value given by a neural network to generate training data for that neural
network.

Links to relevant articles/papers:

	AlphaGo Zero: Starting from scratch [https://deepmind.com/blog/article/alphago-zero-starting-scratch]
has an open access link to the AlphaGo Zero nature paper that describes the
model in detail.

	AlphaZero: Shedding new light on chess, shogi, and Go [https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go]
has an open access link to the AlphaZero science paper that describes the
training regime and generalizes to more games.

Overview:

The Python and C++ implementations are conceptually fairly similar, and have
roughly the same components: actors that generate data through
self-play using MCTS with an evaluator that uses a
neural network, a learner that updates the network based
on those games, and evaluators playing vs standard MCTS to gauge
progress. Both write checkpoints that can be played
independently of the training setup, and logs that can be analyzed
programmatically.

The Python implementation uses one process per actor/evaluator, doesn’t support
batching for inference and does all inference and training on the cpu. The C++
implementation, by contrast, uses threads, a shared cache, supports batched
inference, and can do both inference and training on GPUs. As such the C++
implementation can take advantage of additional hardware and can train
significantly faster.

Model

The model defined in
open_spiel/python/algorithms/alpha_zero/model.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/alpha_zero/model.py] is used by
both the python and C++ implementations.

The model defines three architectures in decreasing complexity:

	resnet: same as the AlphaGo/AlphaZero paper when set with width 256 and
depth 20.

	conv2d: same as the resnet except uses a conv+batchnorm+relu instead of the
residual blocks.

	mlp: same as conv2d except uses dense layers instead of conv, and drops
batch norm.

The model is parameterized by the size of the observations and number of actions
for the game you specify, so can play any 2-player game. The conv2d and resnet
models are restricted to games with a 2d representation (ie a 3d observation
tensor).

The models are all parameterized with a width and depth:

	The depth is the number of blocks in the torso, where the definition of a
block varies by model. For a resnet it’s a resblock which is two conv2ds,
batch norms and relus, and an addition. For conv2d it’s a conv2d, a batch
norm and a relu. For mlp it’s a dense plus relu.

	The width is the number of filters for any conv2d and the number of hidden
units for any dense layer.

The networks all give two outputs: a value and a policy, which are used by the
MCTS evaluator.

MCTS

Monte Carlo Tree Search (MCTS) is a general search algorithm used to play many
games, but first found success playing Go back in ~2005. It builds a tree
directed by random rollouts, and does usually uses UCT to direct the
exploration/exploitation tradeoff. For our use case we replace random rollouts
with a value network. Instead of a uniform prior we use a policy network.
Instead of UCT we use PUCT.

We have implementations of MCTS in
C++ [https://github.com/deepmind/open_spiel/blob/master/open_spiel/algorithms/mcts.h] and
python [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/mcts.py].

MCTS Evaluator

Both MCTS implementations above have a configurable evaluator that returns the
value and prior policy of a given node. For standard MCTS the value is given by
random rollouts, and the prior policy is uniform. For AlphaZero the value and
prior are given by a neural network evaluation. The AlphaZero evaluator takes a
model, so can be used during training or with a trained checkpoint for play with
open_spiel/python/examples/mcts.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/mcts.py].

Actors

The main script launches a set of actor processes (Python) or threads (C++). The
actors create two MCTS instances with a shared evaluator and model, and play
self-play games, passing the trajectories to the learner via a queue. The more
actors the faster it can generate training data, assuming you have sufficient
compute to actually run them. Too many actors for your hardware will mean longer
for individual games to finish and therefore your data could be more out of date
with respect to the up to date checkpoint/weights.

Learner

The learner pulls trajectories from the actors and stores them in a fixed size
FIFO replay buffer. Once the replay buffer has enough new data, it does an
update step sampling from the replay buffer. It then saves a checkpoint and
updates all the actor’s models. It also updates a learner.jsonl file with some
stats.

Evaluators

The main script also launches a set of evaluator processes/threads. They
continually play games against a standard MCTS+Solver to give an idea of how
training is progressing. The MCTS opponents can be scaled in strength based on
the number of simulations they are given per move, so more levels means stronger
but slower opponents.

Output

When running the algorithm a directory must be specified and all output goes
there.

Due to the parallel nature of the algorithm writing logs to stdout/stderr isn’t
very useful, so each actor/learner/evaluator writes its own log file to the
configured directory.

Checkpoints are written after every update step, mostly overwriting the latest
one at checkpoint--1 but every checkpoint_freq is saved at
checkpoint-<step>.

The config file is written to config.json, to make the experiment more
repeatable.

The learner also writes machine readable logs in the
jsonlines [http://jsonlines.org/] format to learner.jsonl, which can be read
with the analysis library.

Usage:

Python

The code lives at open_spiel/python/algorithms/alpha_zero/ [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/alpha_zero/].

The simplest example trains a tic_tac_toe agent for a set number of training
steps:

python3 open_spiel/python/examples/tic_tac_toe_alpha_zero.py

Alternatively you can train on an arbitrary game with many more options:

python3 open_spiel/python/examples/alpha_zero.py --game connect_four --nn_model mlp --actors 10

Analysis

There’s an analysis library at
open_spiel/python/algorithms/alpha_zero/analysis.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/alpha_zero/analysis.py] which
reads the config.json and learner.jsonl from an experiment (either python or
C++), and graphs losses, value accuracy, evaluation results, actor speed, game
lengths, etc. It should be reasonable to turn this into a colab.

Playing vs checkpoints

The checkpoints are compatible between python and C++, and can be loaded by the
model. You can try playing against one directly with
open_spiel/python/examples/mcts.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/mcts.py]:

python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --player2=az --az_path <path to your checkpoint directory>

 The code structure

The code structure

Generally speaking, the directories directly under open_spiel are C++ (except
for integration_tests and python). A similar structure is available in
open_spiel/python, containing the Python equivalent code.

Some top level directories are special:

	open_spiel/integration_tests: Generic (python) tests for all the games.

	open_spiel/tests: The C++ common test utilities.

	open_spiel/scripts: The scripts useful for development (building, running
tests, etc).

For example, we have for C++:

	open_spiel/: Contains the game abstract C++ API.

	open_spiel/games: Contains the games C++ implementations.

	open_spiel/algorithms: The C++ algorithms implemented in OpenSpiel.

	open_spiel/examples: The C++ examples.

	open_spiel/tests: The C++ common test utilities.

For Python you have:

	open_spiel/python/examples: The Python examples.

	open_spiel/python/algorithms/: The Python algorithms.

C++ and Python implementations.

Some objects (e.g. Policy, CFRSolver, BestResponse) are available both in
C++ and Python. The goal is to be able to use C++ objects in place of Python
objects for most of the cases. In particular, for the objects that are well
supported, expect to have in the test for the Python object, a test checking
that both the C++ and the Python implementation behave the same.

Adding a game

We describe here only the simplest and fastest way to add a new game. It is
ideal to first be aware of the general API (see open_spiel/spiel.h).

	Choose a game to copy from in open_spiel/games/ (or
open_spiel/python/games/). Suggested
games: Tic-Tac-Toe and Breakthrough for perfect information without chance
events, Backgammon or Pig for perfect information games with chance events,
Goofspiel and Oshi-Zumo for simultaneous move games, and Leduc poker and
Liar’s dice for imperfect information games. For the rest of these steps, we
assume Tic-Tac-Toe.

	Copy the header and source: tic_tac_toe.h, tic_tac_toe.cc, and
tic_tac_toe_test.cc to new_game.h, new_game.cc, and new_game_test.cc
(or tic_tac_toe.py and tic_tac_toe_test.py).

	Configure CMake:

	If you are working with C++: add the new game’s source files to
open_spiel/games/CMakeLists.txt.

	If you are working with C++: add the new game’s test target to
open_spiel/games/CMakeLists.txt.

	If you are working with Python: add the test to
open_spiel/python/CMakeLists.txt and import it in
open_spiel/python/games/__init__.py

	Update boilerplate C++/Python code:

	In new_game.h, rename the header guard at the the top and bottom of
the file.

	In the new files, rename the inner-most namespace from tic_tac_toe to
new_game.

	In the new files, rename TicTacToeGame and TicTacToeState to
NewGameGame and NewGameState.

	At the top of new_game.cc, change the short name to new_game and
include the new game’s header.

	Update Python integration tests:

	Add the short name to the list of expected games in
open_spiel/python/tests/pyspiel_test.py.

	You should now have a duplicate game of Tic-Tac-Toe under a different name.
It should build and the test should run, and can be verified by rebuilding
and running the example build/examples/example --game=new_game.

	Now, change the implementations of the functions in NewGameGame and
NewGameState to reflect your new game’s logic. Most API functions should
be clear from the game you copied from. If not, each API function that is
overridden will be fully documented in superclasses in open_spiel/spiel.h.

	To test the game as it is being built, you can play test the functionality
interactively using ConsolePlayTest in
open_spiel/tests/console_play_test.h. At the very least, the test should
include some random simulation tests (see other game’s tests for an
example).

	Run your code through a linter so it conforms to Google’s
style guides [https://google.github.io/styleguide/]. For C++ use
cpplint [https://pypi.org/project/cpplint/]. For Python, use
pylint [https://pypi.org/project/pylint/] with the
pylintrc from the Google style guide [https://google.github.io/styleguide/pyguide.html].
There is also YAPF [https://github.com/google/yapf/] for Python as well.

	Once done, rebuild and rerun the tests to ensure everything passes
(including your new game’s test!).

	Add a playthrough file to catch regressions:

	Run ./open_spiel/scripts/generate_new_playthrough.sh new_game to
generate a random game, to be used by integration tests to prevent any
regression. open_spiel/integration_tests/playthrough_test.py will
automatically load the playthroughs and compare them to newly generated
playthroughs.

	If you have made a change that affects playthroughs, run
./scripts/regenerate_playthroughs.sh to update them.

Conditional dependencies

The goal is to make it possible to optionally include external dependencies and
build against them. The setup was designed to met the following needs:

	Single source of truth: We want a single action to be sufficient to
manage the conditional install and build. Thus, we use bash environment
variables, that are read both by the install script (install.sh) to know
whether we should clone the dependency, and by CMake to know whether we
should include the files in the target. Tests can also access the bash
environment variable.

	Light and safe defaults: By default, we exclude the dependencies to
diminish install time and compilation time. If the bash variable is unset,
we download the dependency and we do not build against it.

	Respect the user-defined values: The global_variables.sh script, which
is included in all the scripts that needs to access the constant values, do
not override the constants but set them if and only if they are undefined.
This respects the user-defined values, e.g. on their .bashrc or on the
command line.

When you add a new conditional dependency, you need to touch:

	the root CMakeLists.txt to add the option, with an OFF default

	add the option to scripts/global_variables.sh

	change install.sh to make sure the dependency is installed

	use constructs like if (${OPEN_SPIEL_BUILD_WITH_HANABI}) in CMake to
optionally add the targets to build.

Debugging tools

For complex games it may be tricky to get all the details right. Reading through
the playthrough (or visually inspecting random games via the example) is the
first step in verifying the game mechanics. You can visualize small game trees
using open_spiel/python/examples/treeviz_example.py [https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/treeviz_example.py] or for
large games there is an interactive viewer for OpenSpiel games called
SpielViz [https://github.com/michalsustr/spielviz].

Adding Game-Specific Functionality

OpenSpiel focuses on maintaining a general API to an underlying suite of games,
but sometimes it is convenient to work on specific games. In this section, we
describe how to get (or set) game-specific information from/to the generic state
objects, and how to expose these functions to python.

Suppose, for example, we want to look at (or set) the private cards in a game of
Leduc poker. We will use an example based on this
this commit [https://github.com/deepmind/open_spiel/commit/4cd1e5889e447d285eb3f16901ccab5c14e62187].

	First, locate the game you want to access. The game implementations are in
the games/ subdirectory and have two main files: e.g. leduc_poker.h
(header) and leduc_poker.cc (implementation).

	For simple accessor methods that just return the information and feel free
have the full implementation to the game’s header file (e.g.
LeducState::GetPrivateCards). You can also declare the function in the
header and provide the implementation in source file (e.g.
LeducPoker::SetPrivateCards).

	That’s it for the core game logic. To expose these methods to Python, add
them to the Python module (via pybind11). Some games already have
game-specific functionality, so if a files named games_leduc_poker.h and
games_leduc_poker.cc exist within python/pybind11, add to them (skip to
Step 5).

	If the games-specific files do not exist for your game of interest, then:

	Add the files. Copy one of the other ones, adapt the names, and remove
most of the bindings code.

	Add the new files to the PYTHON_BINDINGS list in
python/CMakeFiles.txt.

	Modify pyspiel.cc: include the header at the top, and call the init
function at the bottom.

	Add the custom methods to the game-specific python bindings
(games_leduc_poker.cc, i.e. LeducPoker::GetPrivateCards and
LeducPoker::SetPrivateCards). For simple types, this should be relatively
straight-forward; you can see how by looking at the other game-specific
functions. For complex types, you may have to bind additional code (see e.g.
games_backgammon.cc). If it is unclear, do not hesitate to ask, but also
please check the
pybind11 documentation [https://pybind11.readthedocs.io/en/stable/].

	Add a simple test to python/games_sim_test.py to check that it worked. For
inspiration, see e.g. test_leduc_get_and_set_private_cards.

Language APIs

There are currently four other language APIs that expose functionality from the
C++ core.

	Python [https://github.com/deepmind/open_spiel/tree/master/open_spiel/python].

	Julia [https://github.com/deepmind/open_spiel/tree/master/open_spiel/julia]

	Go [https://github.com/deepmind/open_spiel/tree/master/open_spiel/go]
(experimental)

	Rust [https://github.com/deepmind/open_spiel/tree/master/open_spiel/rust]
(experimental)

 Guidelines

Guidelines

Above all, OpenSpiel is designed to be easy to install and use, easy to
understand, easy to extend (“hackable”), and general/broad. OpenSpiel is built
around two major important design criteria:

	Keep it simple. Simple choices are preferred to more complex ones. The
code should be readable, usable, extendable by non-experts in the
programming language(s), and especially to researchers from potentially
different fields. OpenSpiel provides reference implementations that are used
to learn from and prototype with, rather than fully-optimized /
high-performance code that would require additional assumptions (narrowing
the scope / breadth) or advanced (or lower-level) language features.

	Keep it light. Dependencies can be problematic for long-term
compatibility, maintenance, and ease-of- use. Unless there is strong
justification, we tend to avoid introducing dependencies to keep things easy
to install and more portable.

Support expectations

We, the OpenSpiel authors, definitely engage in supporting the community. As it
can be time-consuming, we try to find a good balance between ensuring we are
responsive and being able to continue to do our day-to-day work and research.

Generally speaking, if you are willing to get a specific feature implemented,
the most effective way is to implement it and send a Pull Request. For large
changes, or ones involving design decisions, open a bug to check the idea is ok
first.

The higher the quality, the easier it will be to be accepted. For instance,
following the
C++ Google style guide [https://google.github.io/styleguide/cppguide.html] and
Python Google style guide [http://google.github.io/styleguide/pyguide.html]
will help with the integration.

As examples, MacOS support, Window support, example improvements, various
bug-fixes or new games has been straightforward to be included and we are very
thankful to everyone who helped.

Bugs

We aim to answer bugs at a reasonable pace, several times a week. However, for
bugs involving large changes (e.g. adding new games, adding public state
supports) we cannot commit to implementing it and encourage everyone to
contribute directly.

Pull requests

You can expect us to answer/comment back and you will know from the comment if
it will be merged as is or if it will need additional work.

For pull requests, they are merged as batches to be more efficient, at least
every two weeks (for bug fixes, it will likely be faster to be integrated). So
you may need to wait a little after it has been approved to actually see it
merged.

Roadmap and Call for Contributions

Contributions to this project must be accompanied by a Contributor License
Agreement (CLA). See
CONTRIBUTING.md [https://github.com/deepmind/open_spiel/blob/master/CONTRIBUTING.md]
for the details.

Here, we outline our intentions for the future, giving an overview of what we
hope to add over the coming years. We also suggest a number of contributions
that we would like to see, but have not had the time to add ourselves.

Before making a contribution to OpenSpiel, please read the guidelines. We also
kindly request that you contact us before writing any large piece of code, in
case (a) we are already working on it and/or (b) it’s something we have already
considered and may have some design advice on its implementation. Please also
note that some games may have copyrights which might require legal approval.
Otherwise, happy hacking!

The following list is both a Call for Contributions and an idealized road map.
We certainly are planning to add some of these ourselves (and, in some cases
already have implementations that were just not tested well enough to make the
release!). Contributions are certainly not limited to these suggestions!

	Checkers / Draughts. This is a classic game and an important one in the
history of game AI
(”Checkers is solved” [https://science.sciencemag.org/content/317/5844/1518]).

	Chinese Checkers / Halma.
Chinese Checkers [https://en.wikipedia.org/wiki/Chinese_checkers] is the
canonical multiplayer (more than two player) perfect information game.
Currently, OpenSpiel does not contain any games in this category.

	Deep TreeStrap. An implementation of TreeStrap (see
Bootstrapping from Game Tree Search [https://www.cse.unsw.edu.au/~blair/pubs/2009VenessSilverUtherBlairNIPS.pdf]),
except with a DQN-like replay buffer, storing value targets obtained from
minimax searches. We have an initial implementation, but it is not yet ready
for release. We also hope to support PyTorch for this algorithm as well.

	Deep Regret Minimization with Advantage Baselines and Model-free Learning
(DREAM). This is a model-free technique based on Monte Carlo CFR with
function approximation, that has been applied to Poker.
(Ref [https://arxiv.org/abs/2006.10410])

	Double Neural Counterfactual Regret Minimization. This is a technique
similar to Regression CFR that uses a robust sampling technique and a new
network architecture that predicts both the cumulative regret and the
average strategy. (Ref [https://arxiv.org/abs/1812.10607])

	Differentiable Games and Algorithms. For example, Symplectic Gradient
Adjustment (Ref [https://arxiv.org/abs/1802.05642]).

	Emergent Communication Algorithms. For example,
RIAL and/or DIAL [https://arxiv.org/abs/1605.06676] and
CommNet [https://arxiv.org/abs/1605.07736].

	Emergent Communication Games. Referential games such as the ones in
Ref1 [https://arxiv.org/abs/1612.07182],
Ref2 [https://arxiv.org/abs/1710.06922],
Ref3 [https://arxiv.org/abs/1705.11192].

	Extensive-form Evolutionary Dynamics. There have been a number of
different evolutionary dynamics suggested for the sequential games, such as
state-coupled replicator dynamics
(Ref [https://dl.acm.org/citation.cfm?id=1558120]), sequence-form
replicator dynamics (Ref1 [https://arxiv.org/abs/1304.1456],
Ref2 [http://mlanctot.info/files/papers/aamas14sfrd-cfr-kuhn.pdf]),
sequence-form Q-learning
(Ref [https://dl.acm.org/citation.cfm?id=2892753.2892835]), and the logit
dynamics (Ref [https://dl.acm.org/citation.cfm?id=3015889]).

	General Games Wrapper. There are several general game engine languages
and databases of general games that currently exist, for example within the
general game-playing project [http://www.ggp.org/] and the
Ludii General Game System [http://www.ludii.games/index.html]. A very nice
addition to OpenSpiel would be a game that interprets games represented in
these languages and presents them as OpenSpiel games. This could lead to the
potential of evaluating learning agents on hundreds to thousands of games.

	Go API. We currently have an experimental Go [https://golang.org/] API
similar to the Python API. It is exposed using cgo via a C API much like the
CFFI Python bindings from the
Hanabi Learning Environment [https://github.com/deepmind/hanabi-learning-environment].
It is very basic, only exposing the games. It would be nice to have a few
example algorithms and/or utilities written in go.

	Opponent Modeling / Shaping Algorithms. For example,
DRON [https://arxiv.org/abs/1609.05559],
LOLA [https://arxiv.org/abs/1709.04326], and
Stable Opponent Shaping [https://arxiv.org/abs/1811.08469].

	Rust API. We currently have an experimental
Rust [https://www.rust-lang.org/] API. It is exposed via a C API much like
the Go API. It is very basic, only exposing the games. It would be nice to
have a few example algorithms and/or utilities written in Rust.

	Sequential Social Dilemmas. Sequential social dilemmas, such as the ones
found in Ref1 [https://arxiv.org/abs/1702.03037],
Ref2 [https://arxiv.org/abs/1707.06600] . Wolfpack could be a nice one,
since pursuit-evasion games have been common in the literature
(Ref [http://web.media.mit.edu/~cynthiab/Readings/tan-MAS-reinfLearn.pdf]).
Also the coin games from Ref1 [https://arxiv.org/abs/1707.01068] and
Ref2 [https://arxiv.org/abs/1709.04326], and Clamity, Cleanup and/or
Harvest from Ref3 [https://arxiv.org/abs/1812.07019]
Ref4 [https://arxiv.org/abs/1810.08647].

	Structured Action Spaces. Currently, actions are integers between 0 and
some value. There is no easy way to interpret what each action means in a
game-specific way. Nor is there any way to easily represent a composite
action in terms of its parts. A structured action space could represent
actions as a sequence of values (like information states and observations–
and can also include shapes) which can be learned instead of mappings to
flat numbers. Then, each game could have a mapping from the structured
action to the action taken.

	TF_Trajectories. The source code currently includes a batch inference
for running a batch of episodes using Tensorflow directly from C++ (in
contrib/). It has not yet been tested with CMake and public Tensorflow. We
would like to officially support this and move it into the core library.

	Visualizations of games. There exists an interactive viewer for
OpenSpiel games called SpielViz [https://github.com/michalsustr/spielviz].
Contributions to this project, and more visualization tools with OpenSpiel,
are welcome.

	Windows support. Native Windows support was added in early 2022, but
remains experimental and only via building from source. It would be nice to
have Github Actions CI support on Windows to ensure that Windows support is
actively maintained, and eventually support installing OpenSpiel via pip on
Windows as well.

 Using OpenSpiel as a C++ Library

Using OpenSpiel as a C++ Library

OpenSpiel has been designed as a framework: a suite of games, algorithms, and
tools for research in reinforcement learning and search in games. However, there
are situations where one may only want or need a single game/algorithm or small
subset from this collection, or a research experiment does not require modifying
or otherwise interacting very closely with OpenSpiel other than strictly
calling/using it.

In cases like this, it might be nice to use OpenSpiel as a library rather than a
framework. This has the benefit of not forcing the use of certain tools like
CMake or having to continually recompile OpenSpiel when doing your research.

Luckily, this is easy to achieve with OpenSpiel: you simply need to build it as
a shared library once, and then load it dynamically at runtime. This page walks
through how to do this assuming a bash shell on Linux, but is very similar on
MacOS or for other shells.

Install Dependencies

The dependencies of OpenSpiel need to be installed before it can be used as a
library. On MacOS and Debian/Ubuntu Linux, this is often simply just running
./install.sh. Please see the installation from source instructions [https://github.com/deepmind/open_spiel/blob/master/docs/install.md#installation-from-source] for more details.

Compiling OpenSpiel as a Shared Library

To build OpenSpiel as a shared library, simply run:

mkdir build
cd build
BUILD_SHARED_LIB=ON CXX=clang++ cmake -DPython3_EXECUTABLE=$(which python3) -DCMAKE_CXX_COMPILER=${CXX} ../open_spiel
make -j$(nproc) open_spiel

This produces a dynamically-linked library libopen_spiel.so (or
lib_openspiel.dylib on MacOS) in build/ that can be linked against and
loaded dynamically at run-time.

Suppose OpenSpiel was installed in $HOME/open_spiel. The following line adds
the necessary environment variable to let the shell know where to find
libopen_spiel.so at run-time:

export LD_LIBRARY_PATH="${HOME}/open_spiel/build"

You might want to add this line to your $HOME/.bash_profile to avoid having to
do it every time you load the library. Of course, if you are already using
LD_LIBRARY_PATH for something else, then you need to add
${HOME}/open_spiel/build to it (space-separated paths).

Compiling and Running the Example

cd ../open_spiel/examples
clang++ -I${HOME}/open_spiel -I${HOME}/open_spiel/open_spiel/abseil-cpp \
 -std=c++17 -o shared_library_example shared_library_example.cc \
 -L${HOME}/open_spiel/build -lopen_spiel

The first two flags are the include directory paths and the third is the link
directory path. The -lopen_spiel instructs the linker to link against the
OpenSpiel shared library.

That’s it! Now you can run the example using:

./shared_library_example breakthrough

You should also be able to register new games externally without the
implementation being within OpenSpiel nor built into the shared library, though
we are always interested in growing the library and recommend you contact us
about contributing any new games to the suite.

 Authors

Authors

Names are ordered lexicographically. Typo or similar contributors are omitted.

OpenSpiel contributors

	Bart De Vylder

	Edward Hughes

	Edward Lockhart locked@google.com

	Daniel Hennes

	David Ding

	Dustin Morrill

	Elnaz Davoodi

	Finbarr Timbers

	Ivo Danihelka

	Jean-Baptiste Lespiau jblespiau@google.com

	Janos Kramar

	Jonah Ryan-Davis

	Julian Schrittwieser

	Julien Perolat

	Karl Tuyls

	Manuel Kroiss

	Marc Lanctot lanctot@google.com

	Matthew Lai

	Michal Sustr michal.sustr@aic.fel.cvut.cz

	Raphael Marinier

	Paul Muller

	Ryan Faulkner

	Satyaki Upadhyay

	Sebastian Borgeaud

	Sertan Girgin

	Shayegan Omidshafiei

	Srinivasan Sriram

	Thomas Anthony

	Thomas Köppe

	Timo Ewalds tewalds@google.com

	Vinicius Zambaldi vzambaldi@google.com

OpenSpiel with Swift for Tensorflow (now removed)

	James Bradbury jekbradbury@google.com

	Brennan Saeta saeta@google.com

	Dan Zheng danielzheng@google.com

External contributors

See https://github.com/deepmind/open_spiel/graphs/contributors.

 Index

Index

 OpenSpiel Installation on Windows

OpenSpiel Installation on Windows

OpenSpiel has limited support on Windows and is not being regularly tested,
which means support could break at any time. This may change in the future, but
for now please be aware that Windows support is experimental. Please report any
bugs or problems you encounter.

OpenSpiel has limited support on Windows and is not being regularly tested,
which means support could break at any time. This may change in the future
(contributions are welcome), with Github Actions supporting
windows workers [https://docs.github.com/en/actions/using-github-hosted-runners/customizing-github-hosted-runners#installing-software-on-windows-runners%21],
but for now please be aware that Windows support is experimental. Please report
any bugs or problems you encounter.

Option 1: Windows Installation using Visual Studio Community Edition

This option will describe how to install and use OpenSpiel on Windows 10 via
Visual Studio Community Edition [https://visualstudio.microsoft.com/vs/community/].
This process has been written for Windows 10 and tested on Windows 10 Home
Version 20H2, build 19042.1415 (installed on Nov 26th, 2021).

When installing Visual Studio, enable the C++ and Python development, and also
the C++ CMake tools for Windows. C++/CLI support and C++ Clang tools may also be
useful (but not necessary).

You will need to have the following dependencies installed:

	CMake [https://cmake.org/download/]

	git [https://gitforwindows.org/]

	Python [https://www.python.org/downloads/windows/]. Note: get the latest
3.9 release as OpenSpiel has not been tested on 3.10 yet. Also, tick the box
during installation to ensure Python executable is in your path.

	Recommended: Windows Terminal / Powershell.

The rest of the instructions will assume that OpenSpiel is cloned in
C:\Users\MyUser\open_spiel.

Open a Windows Terminal (Windows Powershell), clone OpenSpiel and its
dependencies (commands adapted from open_spiel/scripts/install.sh)

cd C:\Users\MyUser
git clone https://github.com/deepmind/open_spiel.git
cd open_spiel
git clone -b smart_holder --single-branch --depth 1 https://github.com/pybind/pybind11.git pybind11
git clone -b 20211102.0 --single-branch --depth 1 https://github.com/abseil/abseil-cpp.git open_spiel\abseil-cpp
git clone -b 'master' https://github.com/pybind/pybind11_abseil.git open_spiel\pybind11_abseil
cd open_spiel\pybind11_abseil
git checkout '73992b5'
cd ..\..
git clone -b develop --single-branch --depth 1 https://github.com/jblespiau/dds.git open_spiel\games\bridge\double_dummy_solver

Open Visual Studio and continue without code. Then, click on File | Open ->
CMake, and choose C:\Users\MyUser\open_spiel\open_spiel\CMakeLists.txt. CMake
will then run; once you see CMake generation finished, choose Build -> Build
All. The files will be available in
C:\Users\MyUser\open_spiel\open_spiel\out\build\x64-Debug, when the build
completes with “Build All succeeded.”

To be able to import the Python code (both the C++ binding pyspiel and the
rest) from any location, you will need to add to your PYTHONPATH the root
directory and the open_spiel directory. Open
Windows environment variables and add to the PYTHONPATH [https://stackoverflow.com/questions/3701646/how-to-add-to-the-pythonpath-in-windows-so-it-finds-my-modules-packages].
Add the directories C:\Users\MyUser\open_spiel\open_spiel\out\build\x64-Debug
and C:\Users\MyUser\open_spiel\open_spiel\out\build\x64-Debug\python to
PYTHONPATH. If your PYTHONPATH does not exist, then create a new environment
variable for it. To check that python is working, you can run the example in
open_spiel\python\examples.

OpenSpiel has various Python dependencies which may require installing. At a
minimum, you will need the ones in
requirements.txt [https://github.com/deepmind/open_spiel/blob/master/requirements.txt].

pip install absl-py
pip install attrs
pip install numpy

For a complete list, depending on what you will use, see
python_extra_deps.sh [https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/python_extra_deps.sh].

Option 2: Windows Installation using Windows Subsystem for Linux (WSL)

This section describes the installation steps to get OpenSpiel running in a
Windows 10 environment using Windows Subsystem for Linux (WSL). Note that WSL
does not include GPU support, so will run on CPU only.

Process

This process has been written for Windows 10, and tested on Windows 10 build
1903 (March 2019).

	Install the Windows Subsystem for Linux:

Run the following command in Windows Powershell:

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Linux

	Install Ubuntu Linux from the Windows Store. Currently this is version
18.04::

Open up the Windows Store. Search for Ubuntu. Open up Ubuntu and press “Get”
to install this.

	First time run of Ubuntu:

Click on the Start Button and choose the Ubuntu icon. Wait until the distro
installs. Provide a username and password for the default user account. Note
that this account is a member of the Linux administrators (sudo) group so
choose a secure username and password combination.

	Update / Upgrade packages (optional step)

sudo apt-get update
sudo apt-get upgrade

	Run through the first part of the OpenSpiel installation

git clone https://github.com/deepmind/open_spiel.git
cd open_spiel
./install.sh # you will be prompted for the password created at stage 3. Press Y to continue and install. During installation press Yes to restart services during package upgrades
pip install -U pip # Upgrade pip (required for TF >= 1.15)
pip3 install --upgrade -r requirements.txt # Install Python dependencies

	Now need to upgrade make version as the version of make which comes with
Ubuntu 18.04 is not high enough to build OpenSpiel. (Note, this step won’t
be necessary if the version of Ubuntu in the Windows store gets upgraded to
19.04)

cd ..
wget http://www.cmake.org/files/v3.12/cmake-3.12.4.tar.gz
tar -xvzf cmake-3.12.4.tar.gz
cd cmake-3.12.4/
./configure
make
sudo make install
sudo update-alternatives --install /usr/bin/cmake cmake /usr/local/bin/cmake 1 --force
cd ../open_spiel

	Finally, continue with the installation and run tests.

mkdir build
cd build
CXX=clang++ cmake -DPython3_EXECUTABLE=$(which python3) -DCMAKE_CXX_COMPILER=clang++ ../open_spiel
make -j12 # The 12 here is the number of parallel processes used to build
ctest -j12 # Run the tests to verify that the installation succeeded

The CMake variable Python3_EXECUTABLE is used to specify the Python
interpreter. If the variable is not set, CMake’s FindPython3 module will
prefer the latest version installed. Note, Python >= 3.6.0 is required.

One can run an example of a game running (in the build/ folder):

./examples/example --game=tic_tac_toe

	Setting Your PYTHONPATH environment variable

To be able to import the Python code (both the C++ binding pyspiel and the
rest) from any location, you will need to add to your PYTHONPATH the root
directory and the open_spiel directory.

When using a virtualenv, the following should be added to
<virtualenv>/bin/activate. For a system-wide install, add it in your
.bashrc or .profile.

For the python modules in open_spiel.
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>
For the Python bindings of Pyspiel
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>/build/python

	Running the first example

In the build directory, running examples/example will print out a list
of registered games and the usage. Now, let’s play game of Tic-Tac-Toe with
uniform random players:

examples/example --game=tic_tac_toe

 OpenSpiel game methods: action_to_string

OpenSpiel game methods: action_to_string

Back to Core API reference

 OpenSpiel core functions: deserialize_game_and_state

OpenSpiel core functions: deserialize_game_and_state

Back to Core API reference

 OpenSpiel game methods: deserialize_state

OpenSpiel game methods: deserialize_state

Back to Core API reference

 OpenSpiel game methods: information_state_tensor_shape and information_state_tensor_size

OpenSpiel game methods: information_state_tensor_shape and information_state_tensor_size

Back to Core API reference

 OpenSpiel game methods: max_chance_outcomes

