
open_spiel Documentation

The open_spiel authors

Nov 29, 2021

GETTING STARTED

1 What is OpenSpiel? 1

2 Installation 3
2.1 Python-only installation via pip . 3
2.2 Installation from Source . 4
2.3 Summary . 4
2.4 Installing via Docker . 5
2.5 Running the first examples . 6
2.6 Detailed steps . 6

3 First examples 9

4 Concepts 11
4.1 The tree representation . 11

5 Loading a game 13
5.1 Creating sequential games from simultaneous games . 13

6 Playing a trajectory 15

7 Available games 17
7.1 Details . 17

8 -Rank 33
8.1 Importing the Alpha-Rank module . 33
8.2 Running Alpha-Rank on various games . 33
8.3 Visualizing and reporting results . 35

9 Julia OpenSpiel 39
9.1 Install . 39
9.2 Known Problems . 39
9.3 Example . 40
9.4 Q&A . 41

10 The code structure 43

11 C++ and Python implementations. 45

12 Adding a game 47

13 Conditional dependencies 49

i

14 Debugging tools 51

15 Guidelines 53

16 Support expectations 55
16.1 Bugs . 55
16.2 Pull requests . 55

17 Roadmap and Call for Contributions 57

18 Authors 61
18.1 OpenSpiel contributors . 61
18.2 OpenSpiel with Swift for Tensorflow (now removed) . 62
18.3 External contributors . 62

ii

CHAPTER

ONE

WHAT IS OPENSPIEL?

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and
search/planning in games. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation
metrics. Games are represented as procedural extensive-form games, with some natural extensions.

Open Spiel supports

• Single and multi-player games

• Fully observable (via observations) and imperfect information games (via information states and observations)

• Stochasticity (via explicit chance nodes mostly, even though implicit stochasticity is partially supported)

• n-player normal-form “one-shot” games and (2-player) matrix games

• Sequential and simultaneous move games

• Zero-sum, general-sum, and cooperative (identical payoff) games

Multi-language support

• C++17

• Python 3

The games and utility functions (e.g. exploitability computation) are written in C++. These are also available using
pybind11 Python bindings.

The methods names are in CamelCase in C++ and snake_case in Python (e.g. state.ApplyAction in C++ will be
state.apply_action in Python). See the pybind11 definition in open_spiel/python/pybind11/pyspiel.cc for the full
mapping between names.

For algorithms, many are written in both languages, even if some are only available from Python.

Platforms

OpenSpiel has been tested on Linux (Debian 10 and Ubuntu 19.04), MacOS, and Windows 10 (through Windows
Subsystem for Linux).

Visualization of games

There is a basic visualizer based on graphviz, see open_spiel/python/examples/treeviz_example.py.

There is an interactive viewer for OpenSpiel games called SpielViz.

1

https://pybind11.readthedocs.io/en/stable/
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/pybind11/pyspiel.cc
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/treeviz_example.py
https://github.com/michalsustr/spielviz

open_spiel Documentation

2 Chapter 1. What is OpenSpiel?

CHAPTER

TWO

INSTALLATION

2.1 Python-only installation via pip

If you plan to only use the Python API, then the easiest way to install OpenSpiel is to use pip. On MacOS or Linux,
simply run:

python3 -m pip install open_spiel

The binary distribution is new as of OpenSpiel 1.0.0, and is only supported on x86_64 architectures. If you encounter
any problems, you can still install OpenSpiel via pip from source (see below), but please open an issue to let us know
about the problem.

2.1.1 Python-only installation via pip (from source).

If the binary distribution is not an option, you can also build OpenSpiel via pip from source. CMake, Clang and Python
3 development files are required to build the Python extension. Note that we recommend Clang but g++ >= 9.2 should
also work.

E.g. on Ubuntu or Debian:

Check to see if you have the necessary tools for building OpenSpiel:
cmake --version # Must be >= 3.12
clang++ --version # Must be >= 7.0.0
python3-config --help

If not, run this line to install them.
On older Linux distros, the package might be called clang-9 or clang-10
sudo apt-get install cmake clang python3-dev

On older Linux distros, the versions may be too old.
E.g. on Ubuntu 18.04, there are a few extra steps:
sudo apt-get install clang-10
pip3 install cmake # You might need to relogin to get the new CMake version
export CXX=clang++-10

Recommended: Install pip dependencies and run under virtualenv.
sudo apt-get install virtualenv python3-virtualenv
virtualenv -p python3 venv
source venv/bin/activate

(continues on next page)

3

open_spiel Documentation

(continued from previous page)

Finally, install OpenSpiel and its dependencies:
python3 -m pip install --upgrade setuptools pip
python3 -m pip install --no-binary open_spiel

To exit the virtual env
deactivate

IMPORTANT NOTE. If the build fails, please first make sure you have the
required versions of the tools above and that you followed the recommended
option. Then, open an issue: https://github.com/deepmind/open_spiel/issues

Note that the build could take several minutes.

On MacOS, you can install the dependencies via brew install cmake python3. For clang, you need to install or
upgrade XCode and install the command-line developer tools.

2.2 Installation from Source

The instructions here are for Linux and MacOS. For installation on Windows, see these separate installation instructions.
On Linux, we recommend Ubuntu 20.04 (or 19.10), Debian 10, or later versions. There are known issues with default
compilers on Ubuntu on 18.04, and clang-10 must be installed separately. On MacOS, we recommend XCode 11 or
newer.

For the Python API: our tests run using Python 3.8 and 3.9 on Ubuntu 20.04 and MacOS 10.15. We also test using
Ubuntu 18.04 LTS with Python 3.6. So, we recommend one of these setups. If you encounter any problems on other
setups, please let us know by opening an issue.

Currently there are two installation methods:

1. building from the source code and editing PYTHONPATH.

2. using pip install to build and testing using nox. A pip package to install directly does not exist yet.

3. installing via Docker.

2.3 Summary

In a nutshell:

./install.sh # Needed to run once and when major changes are released.

./open_spiel/scripts/build_and_run_tests.sh # Run this every-time you need to rebuild.

1. Install system packages (e.g. cmake) and download some dependencies. Only needs to be run once or if you
enable some new conditional dependencies (see specific section below).

./install.sh

2. Install your Python dependencies, e.g. in Python 3 using virtualenv:

virtualenv -p python3 venv
source venv/bin/activate

4 Chapter 2. Installation

https://github.com/deepmind/open_spiel/issues/407
https://nox.thea.codes/en/stable/
https://www.docker.com
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

open_spiel Documentation

Use deactivate to quit the virtual environment.

pip should be installed once and upgraded:

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
Install pip deps as your user. Do not use the system's pip.
python3 get-pip.py
pip3 install --upgrade pip
pip3 install --upgrade setuptools testresources

3. This sections differs depending on the installation procedure:

Building and testing from source

pip3 install -r requirements.txt
./open_spiel/scripts/build_and_run_tests.sh

Building and testing using PIP

python3 -m pip install .
pip install nox
nox -s tests

Optionally, use pip install -e to install in editable mode, which will allow you to skip this pip install
step if you edit any Python source files. If you edit any C++ files, you will have to rerun the install command.

4. Only when building from source:

For the python modules in open_spiel.
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>
For the Python bindings of Pyspiel
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>/build/python

to ./venv/bin/activate or your ~/.bashrc to be able to import OpenSpiel from anywhere.

To make sure OpenSpiel works on the default configurations, we do use the python3 command and not python (which
still defaults to Python 2 on modern Linux versions).

2.4 Installing via Docker

Please note that we don’t regularly test the Docker installation. As such, it may not work at any given time. We are
investigating enabling tests and proper longer-term support, but it may take some time. Until then, if you encounter a
problem, please open an issue.

Option 1 (Basic, 3.13GB):

docker build --target base -t openspiel -f Dockerfile.base .

Option 2 (Slim, 2.26GB):

docker build --target python-slim -t openspiel -f Dockerfile.base .

If you are only interested in developing in Python, use the second image. You can navigate through the runtime of the
container (after the build step) with:

2.4. Installing via Docker 5

https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs
https://github.com/deepmind/open_spiel/issues

open_spiel Documentation

docker run -it --entrypoint /bin/bash openspiel

Finally you can run examples using:

docker run openspiel python3 python/examples/matrix_game_example.py
docker run openspiel python3 python/examples/example.py

Option 3 (Jupyter Notebook):

Installs OpenSpiel with an additional Jupyter Notebook environment.

docker build -t openspiel-notebook -f Dockerfile.jupyter --rm .
docker run -it --rm -p 8888:8888 openspiel-notebook

More info: https://jupyter-docker-stacks.readthedocs.io/en/latest/

2.5 Running the first examples

In the build directory, running examples/example will prints out a list of registered games and the usage. Now, let’s
play game of Tic-Tac-Toe with uniform random players:

examples/example --game=tic_tac_toe

Once the proper Python paths are set, from the main directory (one above build), try these out:

Similar to the C++ example:
python3 open_spiel/python/examples/example.py --game=breakthrough

Play a game against a random or MCTS bot:
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --
→˓player2=random
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --
→˓player2=mcts

2.6 Detailed steps

2.6.1 Configuration conditional dependencies

See open_spiel/scripts/global_variables.sh to configure the conditional dependencies. See also the Developer Guide.

2.6.2 Installing system-wide dependencies

See open_spiel/scripts/install.sh for the required packages and cloned repositories.

6 Chapter 2. Installation

https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/global_variables.sh
https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh

open_spiel Documentation

2.6.3 Installing Python dependencies

Using a virtualenv to install python dependencies is highly recommended. For more information see: https:
//packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Install dependencies (Python 3):

virtualenv -p python3 venv
source venv/bin/activate
pip3 install -r requirements.txt

Alternatively, although not recommended, you can install the Python dependencies system-wide with:

pip3 install --upgrade -r requirements.txt

2.6.4 Building and running tests

Make sure that the virtual environment is still activated.

By default, Clang C++ compiler is used (and potentially installed by open_spiel/scripts/install.sh).

Build and run tests (Python 3):

mkdir build
cd build
CXX=clang++ cmake -DPython3_EXECUTABLE=$(which python3) -DCMAKE_CXX_COMPILER=${CXX} ../
→˓open_spiel
make -j$(nproc)
ctest -j$(nproc)

The CMake variable Python3_EXECUTABLE is used to specify the Python interpreter. If the variable is not set, CMake’s
FindPython3 module will prefer the latest version installed. Note, Python >= 3.6.0 is required.

One can run an example of a game running (in the build/ folder):

./examples/example --game=tic_tac_toe

2.6.5 Setting Your PYTHONPATH environment variable

To be able to import the Python code (both the C++ binding pyspiel and the rest) from any location, you will need to
add to your PYTHONPATH the root directory and the open_spiel directory.

When using a virtualenv, the following should be added to <virtualenv>/bin/activate. For a system-wide install,
ddd it in your .bashrc or .profile.

For the python modules in open_spiel.
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>
For the Python bindings of Pyspiel
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>/build/python

2.6. Detailed steps 7

https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh

open_spiel Documentation

8 Chapter 2. Installation

CHAPTER

THREE

FIRST EXAMPLES

One can run an example of a game running (in the build/ folder):

./examples/example --game=tic_tac_toe

Similar examples using the Python API (run from one above build):

Similar to the C++ example:
python3 open_spiel/python/examples/example.py --game=breakthrough

Play a game against a random or MCTS bot:
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --
→˓player2=random
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --
→˓player2=mcts

9

open_spiel Documentation

10 Chapter 3. First examples

CHAPTER

FOUR

CONCEPTS

The following documentation describes the high-level concepts. Refer to the code comments for specific API descrip-
tions.

Note that, in English, the word “game” is used for both the description of the rules (e.g. the game of chess) and for a
specific instance of a playthrough (e.g. “we played a game of chess yesterday”). We will be using “playthrough” or
“trajectory” to refer to the second concept.

The methods names are in CamelCase in C++ and snake_case in Python without any other difference (e.g. state.
ApplyAction in C++ will be state.apply_action in Python).

4.1 The tree representation

There are mainly 2 concepts to know about (defined in open_spiel/spiel.h):

• A Game object contains the high level description for a game (e.g. whether it is simultaneous or sequential, the
number of players, the maximum and minimum scores).

• A State, which describe a specifics point (e.g. a specific board position in chess, a specific set of player cards,
public cards and past bets in Poker) within a trajectory.

All possible trajectories in a game are represented as a tree. In this tree, a node is a State and is associated to a specific
history of moves for all players. Transitions are actions taken by players (in case of a simultaneous node, the transition
is composed of the actions for all players).

Note that in most games, we deal with chance (i.e. any source of randomness) using a an explicit player (the “chance”
player, which has id kChancePlayerId). For example, in Poker, the root state would just be the players without any
cards, and the first transitions will be chance nodes to deal the cards to the players (in practice once card is dealt per
transition).

See spiel.h for the full API description. For example, game.NewInitialState() will return the root State. Then,
state.LegalActions() can be used to get the possible legal actions and state.ApplyAction(action) can be
used to update state in place to play the given action (use state.Child(action) to create a new state and apply
the action to it).

11

https://github.com/deepmind/open_spiel/blob/master/open_spiel/spiel.h

open_spiel Documentation

12 Chapter 4. Concepts

CHAPTER

FIVE

LOADING A GAME

The games are all implemented in C++ in open_spiel/games. Available games names can be listed using
RegisteredNames().

A game can be created from its name and its arguments (which usually have defaults). There are 2 ways to create a
game:

• Using the game name and a structured GameParameters object (which, in Python, is a dictionary from argument
name to compatible types (int, bool, str or a further dict). e.g. {"players": 3} with LoadGame.

• Using a string representation such as kuhn_poker(players=3), giving
LoadGame(kuhn_poker(players=3)). See open_spiel/game_parameters.cc for the exact syntax.

5.1 Creating sequential games from simultaneous games

It is possible to apply generic game transformations (see open_spiel/game_transforms/) such as loading an n-players
simultaneous games into an equivalent turn-based game where simultaneous moves are encoded as n turns.

One can use LoadGameAsTurnBased(game), or use the string representation, such
as turn_based_simultaneous_game(game=goofspiel(imp_info=True,num_cards=4,
points_order=descending)).

13

https://github.com/deepmind/open_spiel/blob/master/open_spiel/games
https://github.com/deepmind/open_spiel/blob/master/open_spiel/game_transforms/

open_spiel Documentation

14 Chapter 5. Loading a game

CHAPTER

SIX

PLAYING A TRAJECTORY

Here are for example the Python code to play one trajectory:

import random
import pyspiel
import numpy as np

game = pyspiel.load_game("kuhn_poker")
state = game.new_initial_state()
while not state.is_terminal():
legal_actions = state.legal_actions()
if state.is_chance_node():
Sample a chance event outcome.
outcomes_with_probs = state.chance_outcomes()
action_list, prob_list = zip(*outcomes_with_probs)
action = np.random.choice(action_list, p=prob_list)
state.apply_action(action)

else:
The algorithm can pick an action based on an observation (fully observable
games) or an information state (information available for that player)
We arbitrarily select the first available action as an example.
action = legal_actions[0]
state.apply_action(action)

See open_spiel/python/examples/example.py for a more thorough example that covers more use of the core API.

See open_spiel/python/examples/playthrough.py (and open_spiel/python/algorithms/generate_playthrough.py) for an
richer example generating a playthrough and printing all available information.

In C++, see open_spiel/examples/example.cc which generates random trajectories.

15

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/example.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/playthrough.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/generate_playthrough.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/examples/example.cc

open_spiel Documentation

16 Chapter 6. Playing a trajectory

CHAPTER

SEVEN

AVAILABLE GAMES

: thoroughly-tested. In many cases, we verified against known values and/or reproduced results from papers.

~: implemented but lightly tested.

X: known issues (see code for details).

7.1 Details

7.1.1 Backgammon

• Players move their pieces through the board based on the rolls of dice.

• Idiosyncratic format.

• Traditional game.

• Non-deterministic.

• Perfect information.

• 2 players.

• Wikipedia

7.1.2 Battleship

• Players place ships and shoot at each other in turns.

• Pieces on a board.

• Traditional game.

• Deterministic.

• Imperfect information.

• 2 players.

• Good for correlated equilibria.

• Farina et al. ‘19, Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks. Based on
the original game (wikipedia)

17

https://en.wikipedia.org/wiki/Backgammon
https://papers.nips.cc/paper/9122-correlation-in-extensive-form-games-saddle-point-formulation-and-benchmarks.pdf
https://en.wikipedia.org/wiki/Battleship_(game)

open_spiel Documentation

7.1.3 Blackjack

• Simplified version of blackjack, with only HIT/STAND moves.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 1 player.

• Wikipedia

7.1.4 Breakthrough

• Simplified chess using only pawns.

• Pieces on a grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

7.1.5 Bridge

• A card game where players compete in pairs.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 4 players.

• Wikipedia

7.1.6 (Uncontested) Bridge bidding

• Players score points by forming specific sets with the cards in their hands.

• Card game.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

18 Chapter 7. Available games

https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Contract_bridge
https://en.wikipedia.org/wiki/Contract_bridge

open_spiel Documentation

7.1.7 Catch

• Agent must move horizontally to ‘catch’ a descending ball. Designed to test basic learning.

• Agent on a grid.

• Research game.

• Non-deterministic.

• Perfect information.

• 1 players.

• Mnih et al. 2014, Recurrent Models of Visual Attention,Osband et al ‘19, Behaviour Suite for Reinforcement
Learning, Appendix A

7.1.8 Cliff Walking

• Agent must find goal without falling off a cliff. Designed to demonstrate exploration-with-danger.

• Agent on a grid.

• Research game.

• Deterministic.

• Perfect information.

• 1 players.

• Sutton et al. ‘18, page 132

7.1.9 Clobber

• Simplified checkers, where tokens can capture neighbouring tokens. Designed to be amenable to combinatorial
analysis.

• Pieces on a grid.

• Research game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

7.1.10 Coin Game

• Agents must collect their and their collaborator’s tokens while avoiding a third kind of token. Designed to test
divining of collaborator’s intentions

• Agents on a grid.

• Research game.

• Non-deterministic.

• Perfect, incomplete information.

7.1. Details 19

https://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
https://arxiv.org/abs/1908.03568
https://arxiv.org/abs/1908.03568
http://www.incompleteideas.net/book/bookdraft2018mar21.pdf
https://en.wikipedia.org/wiki/Clobber

open_spiel Documentation

• 2 players.

• Raileanu et al. ‘18, Modeling Others using Oneself in Multi-Agent Reinforcement Learning

7.1.11 Connect Four

• Players drop tokens into columns to try and form a pattern.

• Tokens on a grid.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

7.1.12 Cooperative Box-Pushing

• Agents must collaborate to push a box into the goal. Designed to test collaboration.

• Agents on a grid.

• Research game.

• Deterministic.

• Perfect information.

• 2 players.

• Seuken & Zilberstein ‘12, Improved Memory-Bounded Dynamic Programming for Decentralized POMDPs

7.1.13 Chess

• Players move pieces around the board with the goal of eliminating the opposing pieces.

• Pieces on a grid.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

20 Chapter 7. Available games

https://arxiv.org/abs/1802.09640
https://en.wikipedia.org/wiki/Connect_Four
https://arxiv.org/abs/1206.5295
https://en.wikipedia.org/wiki/Chess

open_spiel Documentation

7.1.14 Dark Hex

• Hex, except the opponent’s tokens are hidden. (Imperfect-information version)

• Uses tokens on a hex grid.

• Research game.

• Deterministic.

• Imperfect information.

• 2 players.

7.1.15 Deep Sea

• Agent must explore to find reward (first version) or penalty (second version). Designed to test exploration.

• Agent on a grid.

• Research game.

• Deterministic.

• Perfect information.

• 1 players.

• Osband et al. ‘17, Deep Exploration via Randomized Value Functions

7.1.16 First-price Sealed-Bid Auction

• Agents submit bids simultaneously; highest bid wins, and that’s the price paid.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect, incomplete information.

• 2-10 players.

• Wikipedia

7.1.17 Gin Rummy

• Players score points by forming specific sets with the cards in their hands.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

7.1. Details 21

https://arxiv.org/abs/1703.07608
https://en.wikipedia.org/wiki/First-price_sealed-bid_auction
https://en.wikipedia.org/wiki/Gin_rummy

open_spiel Documentation

7.1.18 Go

• Players place tokens on the board with the goal of encircling territory.

• Tokens on a grid.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

7.1.19 Goofspiel

• Players bid with their cards to win other cards.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 2-10 players.

• Wikipedia

7.1.20 Hanabi

• Players can see only other player’s pieces, and everyone must cooperate to win.

• Idiosyncratic format.

• Modern game.

• Non-deterministic.

• Imperfect information.

• 2-5 players.

• Wikipedia and Bard et al. ‘19, The Hanabi Challenge: A New Frontier for AI Research

• Implemented via Hanabi Learning Environment

7.1.21 Havannah

• Players add tokens to a hex grid to try and form a winning structure.

• Tokens on a hex grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

22 Chapter 7. Available games

https://en.wikipedia.org/wiki/Go_(game)
https://en.wikipedia.org/wiki/Goofspiel
https://en.wikipedia.org/wiki/Hanabi_(card_game)
https://arxiv.org/abs/1902.00506
https://github.com/deepmind/hanabi-learning-environment

open_spiel Documentation

• Wikipedia

7.1.22 Hearts

• A card game where players try to avoid playing the highest card in each round.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 3-6 players.

• Wikipedia

7.1.23 Hex

• Players add tokens to a hex grid to try and link opposite sides of the board.

• Uses tokens on a hex grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

• Hex, the full story by Ryan Hayward and Bjarne Toft

7.1.24 Kriegspiel

• Chess with opponent’s pieces unknown. Illegal moves have no effect - it remains the same player’s turn until
they make a legal move.

• Traditional chess variant, invented by Henry Michael Temple in 1899.

• Deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

• Monte Carlo tree search in Kriegspiel

• Game-Tree Search with Combinatorially Large Belief States, Parker 2005

7.1. Details 23

https://en.wikipedia.org/wiki/Havannah
https://en.wikipedia.org/wiki/Hearts_(card_game)
https://en.wikipedia.org/wiki/Hex_(board_game)
https://webdocs.cs.ualberta.ca/~hayward/hexbook/hex.html
https://en.wikipedia.org/wiki/Kriegspiel_(chess)
https://www.ics.uci.edu/~dechter/courses/ics-295/fall-2019/papers/2010-mtc-aij.pdf
https://www.cs.umd.edu/~nau/papers/parker2005game-tree.pdf

open_spiel Documentation

7.1.25 Kuhn poker

• Simplified poker amenable to game-theoretic analysis.

• Cards with bidding.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

7.1.26 Laser Tag

• Agents see a local part of the grid, and attempt to tag each other with beams.

• Agents on a grid.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Leibo et al. ‘17, Lanctot et al. ‘17

7.1.27 Leduc poker

• Simplified poker amenable to game-theoretic analysis.

• Cards with bidding.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Southey et al. ‘05, Bayes’ bluff: Opponent modelling in poker

7.1.28 Lewis Signaling

• Receiver must choose an action dependent on the sender’s hidden state. Designed to demonstrate the use of
conventions.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

24 Chapter 7. Available games

https://en.wikipedia.org/wiki/Kuhn_poker
https://arxiv.org/abs/1702.03037
https://arxiv.org/abs/1711.00832
https://arxiv.org/abs/1207.1411

open_spiel Documentation

• Wikipedia

7.1.29 Liar’s Dice

• Players bid and bluff on the state of all the dice together, given only the state of their dice.

• Dice with bidding.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

7.1.30 Markov Soccer

• Agents must take the ball to their goal, and can ‘tackle’ the opponent by predicting their next move.

• Agents on a grid.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Littman ‘94, Markov games as a framework for multi-agent reinforcement learning,He et al. ‘16, Opponent
Modeling in Deep Reinforcement Learning

7.1.31 Matching Pennies (Three-player)

• Players must predict and match/oppose another player. Designed to have an unstable Nash equilibrium.

• Idiosyncratic format.

• Research game.

• Deterministic.

• Imperfect information.

• 3 players.

• “Three problems in learning mixed-strategy Nash equilibria”

7.1. Details 25

https://en.wikipedia.org/wiki/Lewis_signaling_game
https://en.wikipedia.org/wiki/Liar%27s_dice
https://www2.cs.duke.edu/courses/spring07/cps296.3/littman94markov.pdf
https://arxiv.org/abs/1609.05559
https://arxiv.org/abs/1609.05559

open_spiel Documentation

7.1.32 Mean Field Game : routing

• Representative player chooses at each nodes where they go. They has an origin, a destination and a departure
time and choose their route to minimize their travel time. Time spent on each link is a function of the distribution
of players on the link when the player reaches the link.

• Network with choice of route.

• Research game.

• Mean-field (with a unique player).

• Explicit stochastic game (only for initial node).

• Perfect information.

• Cabannes et. al. ‘21, Solving N-player dynamic routing games with congestion: a mean field approach.

7.1.33 Negotiation

• Agents with different utilities must negotiate an allocation of resources.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Lewis et al. ‘17, Cao et al. ‘18

7.1.34 Oh Hell

• A card game where players try to win exactly a declared number of tricks.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 3-7 players.

• Wikipedia

7.1.35 Oshi-Zumo

• Players must repeatedly bid to push a token off the other side of the board.

• Idiosyncratic format.

• Traditional game.

• Deterministic.

• Imperfect information.

• 2 players.

26 Chapter 7. Available games

https://arxiv.org/pdf/2110.11943.pdf
https://arxiv.org/abs/1706.05125
https://arxiv.org/abs/1804.03980
https://en.wikipedia.org/wiki/Oh_Hell

open_spiel Documentation

• Buro, 2004. Solving the oshi-zumo game Bosansky et al. ‘16, Algorithms for Computing Strategies in Two-
Player Simultaneous Move Games

7.1.36 Oware

• Players redistribute tokens from their half of the board to capture tokens in the opponent’s part of the board.

• Idiosyncratic format.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

7.1.37 Pentago

• Players place tokens on the board, then rotate part of the board to a new orientation.

• Uses tokens on a grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

7.1.38 Phantom Tic-Tac-Toe

• Tic-tac-toe, except the opponent’s tokens are hidden. Designed as a simple, imperfect-information game.

• Uses tokens on a grid.

• Research game.

• Deterministic.

• Imperfect information.

• 2 players.

• Auger ‘11, Multiple Tree for Partially Observable Monte-Carlo Tree Search,Lisy ‘14, Alternative Selection Func-
tions for Information Set Monte Carlo Tree Search, Lanctot ‘13

7.1. Details 27

https://link.springer.com/chapter/10.1007/978-0-387-35706-5_23
http://mlanctot.info/files/papers/aij-2psimmove.pdf
http://mlanctot.info/files/papers/aij-2psimmove.pdf
https://en.wikipedia.org/wiki/Oware
https://en.wikipedia.org/wiki/Pentago
https://hal.archives-ouvertes.fr/hal-00563480v2/document
https://core.ac.uk/download/pdf/81646968.pdf
https://core.ac.uk/download/pdf/81646968.pdf
http://mlanctot.info/files/papers/PhD_Thesis_MarcLanctot.pdf

open_spiel Documentation

7.1.39 Pig

• Each player rolls a dice until they get a 1 or they ‘hold’; the rolled total is added to their score.

• Dice game.

• Traditional game.

• Non-deterministic.

• Perfect information.

• 2-10 players.

• Wikipedia

7.1.40 Poker (Hold ‘em)

• Players bet on whether their hand of cards plus some communal cards will form a special set.

• Cards with bidding.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 2-10 players.

• Wikipedia

• Implemented via ACPC.

7.1.41 Quoridor

• Each turn, players can either move their agent or add a small wall to the board.

• Idiosyncratic format.

• Modern game.

• Deterministic.

• Perfect information.

• 2-4 players.

• Wikipedia

7.1.42 Reconnaissance Blind Chess

• Chess with opponent’s pieces unknown, with sensing moves.

• Chess variant, invented by John Hopkins University Applied Physics Lab. Used in NeurIPS competition and
Hidden Information Game Competition.

• Deterministic.

• Imperfect information.

• 2 players.

28 Chapter 7. Available games

https://en.wikipedia.org/wiki/Pig_(dice_game)
https://en.wikipedia.org/wiki/Texas_hold_%27em
http://www.computerpokercompetition.org/
https://en.wikipedia.org/wiki/Quoridor

open_spiel Documentation

• JHU APL Main site

• Markowitz et al. ‘18, On the Complexity of Reconnaissance Blind Chess

• Newman et al. ‘16, Reconnaissance blind multi-chess: an experimentation platform for ISR sensor fusion and
resource management

7.1.43 Routing game

• Players choose at each nodes where they go. They have an origin, a destination and a departure time and choose
their route to minimize their travel time. Time spent on each link is a function of the number of players on the
link when the player reaches the link.

• Network with choice of route.

• Research game.

• Simultaneous.

• Deterministic.

• Perfect information.

• Any number of players.

• Cabannes et. al. ‘21, Solving N-player dynamic routing games with congestion: a mean field approach.

7.1.44 Sheriff

• Bargaining game.

• Deterministic.

• Imperfect information.

• 2 players.

• Good for correlated equilibria.

• Farina et al. ‘19, Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks.

• Based on the board game “Sheriff of Nottingham” (bbg)

7.1.45 Slovenian Tarok

• Trick-based card game with bidding.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 3-4 players.

• Wikipedia

• Luštrek et al. 2003, A program for playing Tarok

7.1. Details 29

https://rbc.jhuapl.edu/
https://arxiv.org/abs/1811.03119
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9842/984209/Reconnaissance-blind-multi-chess--an-experimentation-platform-for-ISR/10.1117/12.2228127.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9842/984209/Reconnaissance-blind-multi-chess--an-experimentation-platform-for-ISR/10.1117/12.2228127.short?SSO=1
https://arxiv.org/pdf/2110.11943.pdf
https://papers.nips.cc/paper/9122-correlation-in-extensive-form-games-saddle-point-formulation-and-benchmarks.pdf
https://boardgamegeek.com/boardgame/157969/sheriff-nottingham
https://en.wikipedia.org/wiki/K%C3%B6nigrufen#Slovenia
https://pdfs.semanticscholar.org/a920/70fe11f75f58c27ed907c4688747259cae15.pdf

open_spiel Documentation

7.1.46 Skat (simplified bidding)

• Each turn, players bid to compete against the other two players.

• Cards with bidding.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 3 players.

• Wikipedia

7.1.47 Solitaire (K+)

• A single-player card game.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 1 players.

• Wikipedia and Bjarnason et al. ‘07, Searching solitaire in real time

7.1.48 Tic-Tac-Toe

• Players place tokens to try and form a pattern.

• Uses tokens on a grid.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

7.1.49 Tiny Bridge

• Simplified Bridge with fewer cards and tricks.

• Cards with bidding.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2, 4 players.

• See implementation for details.

30 Chapter 7. Available games

https://en.wikipedia.org/wiki/Skat_(card_game)
https://en.wikipedia.org/wiki/Klondike_(solitaire)
http://web.engr.oregonstate.edu/~afern/papers/solitaire.pdf
https://en.wikipedia.org/wiki/Tic-tac-toe

open_spiel Documentation

7.1.50 Tiny Hanabi

• Simplified Hanabi with just two turns.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2-10 players.

• Foerster et al 2018, Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning

7.1.51 Trade Comm

• Players with different utilities and items communicate and then trade.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• A simple emergent communication game based on trading.

7.1.52 Y

• Players place tokens to try and connect sides of a triangular board.

• Tokens on hex grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

7.1. Details 31

https://arxiv.org/abs/1811.01458
https://en.wikipedia.org/wiki/Y_(game)

open_spiel Documentation

32 Chapter 7. Available games

CHAPTER

EIGHT

-RANK

OpenSpiel now supports using Alpha-Rank (“-Rank: Multi-Agent Evaluation by Evolution”, 2019) for both single-
population (symmetric) and multi-population games. Specifically, games can be specified via payoff tables (or tensors
for the >2 players case) as well as Heuristic Payoff Tables (HPTs).

The following presents several typical use cases for Alpha-Rank. For an example complete python script, refer to
open_spiel/python/egt/examples/alpharank_example.py.

8.1 Importing the Alpha-Rank module

from open_spiel.python.egt import alpharank
from open_spiel.python.egt import alpharank_visualizer

8.2 Running Alpha-Rank on various games

8.2.1 Example: symmetric 2-player game rankings

In this example, we run Alpha-Rank on a symmetric 2-player game (Rock-Paper-Scissors), computing and outputting
the rankings in a tabular format. We demonstrate also the conversion of standard payoff tables to Heuristic Payoff
Tables (HPTs), as both are supported by the ranking code.

Load the game
game = pyspiel.load_matrix_game("matrix_rps")
payoff_tables = utils.game_payoffs_array(game)

Convert to heuristic payoff tables
payoff_tables= [heuristic_payoff_table.from_matrix_game(payoff_tables[0]),

heuristic_payoff_table.from_matrix_game(payoff_tables[1].T)]

Check if the game is symmetric (i.e., players have identical strategy sets
and payoff tables) and return only a single-player’s payoff table if so.
This ensures Alpha-Rank automatically computes rankings based on the
single-population dynamics.
_, payoff_tables = utils.is_symmetric_matrix_game(payoff_tables)

Compute Alpha-Rank
(rhos, rho_m, pi, num_profiles, num_strats_per_population) = alpharank.compute(

payoff_tables, alpha=1e2)
(continues on next page)

33

https://www.nature.com/articles/s41598-019-45619-9
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/egt/examples/alpharank_example.py

open_spiel Documentation

(continued from previous page)

Report results
alpharank.print_results(payoff_tables, payoffs_are_hpt_format, pi=pi)

Output

Agent Rank Score
----- ---- -----
0 1 0.33
1 1 0.33
2 1 0.33

8.2.2 Example: multi-population game rankings

The next example demonstrates computing Alpha-Rank on an asymmetric 3-player meta-game, constructed by com-
puting payoffs for Kuhn poker agents trained via extensive-form fictitious play (XFP). Here we use a helper function,
compute_and_report_alpharank, which internally conducts the pre-processing and visualization shown in the pre-
vious example.

Load the game
payoff_tables = alpharank_example.get_kuhn_poker_data(num_players=3)

Helper function for computing & reporting Alpha-Rank outputs
alpharank.compute_and_report_alpharank(payoff_tables, alpha=1e2)

Output

Agent Rank Score
----- ---- -----
(2,3,3) 1 0.22
(3,3,3) 2 0.14
(3,2,3) 3 0.12
(2,2,3) 4 0.09
(3,1,3) 5 0.08
(2,1,3) 6 0.05
(1,2,3) 7 0.04
(2,3,1) 8 0.02
...

34 Chapter 8. -Rank

open_spiel Documentation

8.3 Visualizing and reporting results

This section provides details on various methods used for reporting the final Alpha-Rank results.

8.3. Visualizing and reporting results 35

open_spiel Documentation

8.3.1 Basic Ranking Outputs

The final rankings computed can be printed in a tabular manner using the following interface:

alpharank.print_results(payoff_tables, payoffs_are_hpt_format, pi=pi)

Output

Agent Rank Score
----- ---- -----
0 1 0.33
1 1 0.33
2 1 0.33

8.3.2 Markov Chain Visualization

One may visualize the Alpha-Rank Markov transition matrix as follows:

m_network_plotter = alpharank_visualizer.NetworkPlot(payoff_tables, rhos,
rho_m, pi,strat_labels,
num_top_profiles=8)

m_network_plotter.compute_and_draw_network()

Output

36 Chapter 8. -Rank

open_spiel Documentation

8.3.3 Alpha-sweep plots

One may choose to conduct a sweep over the ranking-intensity parameter, alpha (as opposed to choosing a fixed alpha).
This is, in general, useful for general games where bounds on payoffs may be unknown, and where the ranking computed
by Alpha-Rank should use a sufficiently high value of alpha (to ensure correspondence to the underlying Markov-Conley
chain solution concept). In such cases, the following interface can be used to both visualize the sweep and obtain the
final rankings computed:

alpharank.sweep_pi_vs_alpha(payoff_tables, visualize=True)

Output

8.3. Visualizing and reporting results 37

open_spiel Documentation

38 Chapter 8. -Rank

CHAPTER

NINE

JULIA OPENSPIEL

We also provide a Julia wrapper for the OpenSpiel project. Most APIs are aligned with those in Python (some are
extended to accept AbstractArray and/or keyword arguments for convenience). See spiel.h for the full API de-
scription.

9.1 Install

For general usage, you can install this package in the Julia REPL with] add OpenSpiel. Note that this method only
supports the Linux platform and ACPC is not included. For developers, you need to follow the instructions bellow to
install this package:

1. Install Julia and dependencies. Edit open_spiel/scripts/global_variables.sh and set
OPEN_SPIELOPEN_SPIEL_BUILD_WITH_JULIA=ON (you may also turn on other options as you wish).
Then run ./install.sh. If you already have Julia installed on your system, make sure that it is visible in your
terminal and its version is v1.3 or later. Otherwise, Julia v1.3.1 will be automatically installed in your home dir
and a soft link will be created at /usr/local/bin/julia.

2. Build and run tests

./open_spiel/scripts/build_and_run_tests.sh

3. Install] dev ./open_spiel/julia (run in Julia REPL).

9.2 Known Problems

1. There’s a problem when building this package on Mac with XCode v11.4 or above (see discussions here). To
fix it, you need to install the latest libcxxwrap by following the instructions here after running ./install.
sh. Then make sure that the result of julia --project=./open_spiel/julia -e 'using CxxWrap;
print(CxxWrap.prefix_path())' points to the newly built libcxxwrap. After that, build and install this
package as stated above.

39

https://github.com/deepmind/open_spiel/pull/187#issuecomment-616540881
https://github.com/JuliaInterop/libcxxwrap-julia#building-libcxxwrap-julia

open_spiel Documentation

9.3 Example

Here we demonstrate how to use the Julia API to play one game:

using OpenSpiel

Here we need the StatsBase package for weighted sampling
using Pkg
Pkg.add("StatsBase")
using StatsBase

function run_once(name)
game = load_game(name)
state = new_initial_state(game)
println("Initial state of game[$(name)] is:\n$(state)")

while !is_terminal(state)
if is_chance_node(state)

outcomes_with_probs = chance_outcomes(state)
println("Chance node, got $(length(outcomes_with_probs)) outcomes")
actions, probs = zip(outcomes_with_probs...)
action = actions[sample(weights(collect(probs)))]
println("Sampled outcome: $(action_to_string(state, action))")
apply_action(state, action)

elseif is_simultaneous_node(state)
chosen_actions = [rand(legal_actions(state, pid-1)) for pid in 1:num_

→˓players(game)] # in Julia, indices start at 1
println("Chosen actions: $([action_to_string(state, pid-1, action) for (pid,␣

→˓action) in enumerate(chosen_actions)])")
apply_action(state, chosen_actions)

else
action = rand(legal_actions(state))
println("Player $(current_player(state)) randomly sampled action: $(action_

→˓to_string(state, action))")
apply_action(state, action)

end
println(state)

end
rts = returns(state)
for pid in 1:num_players(game)

println("Utility for player $(pid-1) is $(rts[pid])")
end

end

run_once("tic_tac_toe")
run_once("kuhn_poker")
run_once("goofspiel(imp_info=True,num_cards=4,points_order=descending)")

40 Chapter 9. Julia OpenSpiel

open_spiel Documentation

9.4 Q&A

1. What is StdVector?

StdVector is introduced in CxxWrap.jl recently. It is a wrapper of std::vector in the C++ side. Since that it
is a subtype of AbstractVector, most functions should just work out of the box.

2. 0-based or 1-based?

As this package is a low-level wrapper of OpenSpiel C++, most APIs are zero-based: for instance, the Player
id starts from zero. But note that some bridge types, like StdVector, implicitly convert between indexing
conventions, so APIs that use StdVector are one-based.

3. I can’t find the xxx function/type in the Julia wrapper/The program exits unexpectedly.

Although most of the functions and types should be exported, there is still a chance that some APIs are not well
tested. So if you encounter any error, please do not hesitate to create an issue.

9.4. Q&A 41

https://github.com/JuliaInterop/CxxWrap.jl

open_spiel Documentation

42 Chapter 9. Julia OpenSpiel

CHAPTER

TEN

THE CODE STRUCTURE

Generally speaking, the directories directly under open_spiel are C++ (except for integration_tests and
python). A similar structure is available in open_spiel/python, containing the Python equivalent code.

Some top level directories are special:

• open_spiel/integration_tests: Generic (python) tests for all the games.

• open_spiel/tests: The C++ common test utilities.

• open_spiel/scripts: The scripts useful for development (building, running tests, etc).

For example, we have for C++:

• open_spiel/: Contains the game abstract C++ API.

• open_spiel/games: Contains the games C++ implementations.

• open_spiel/algorithms: The C++ algorithms implemented in OpenSpiel.

• open_spiel/examples: The C++ examples.

• open_spiel/tests: The C++ common test utilities.

For Python you have:

• open_spiel/python/examples: The Python examples.

• open_spiel/python/algorithms/: The Python algorithms.

43

open_spiel Documentation

44 Chapter 10. The code structure

CHAPTER

ELEVEN

C++ AND PYTHON IMPLEMENTATIONS.

Some objects (e.g. Policy, CFRSolver, BestResponse) are available both in C++ and Python. The goal is to be able
to use C++ objects in place of Python objects for most of the cases. In particular, for the objects that are well supported,
expect to have in the test for the Python object, a test checking that both the C++ and the Python implementation behave
the same.

45

open_spiel Documentation

46 Chapter 11. C++ and Python implementations.

CHAPTER

TWELVE

ADDING A GAME

We describe here only the simplest and fastest way to add a new game. It is ideal to first be aware of the general API
(see spiel.h).

1. Choose a game to copy from in games/ (or python/games/). Suggested games: Tic-Tac-Toe and Breakthrough
for perfect information without chance events, Backgammon or Pig for perfect information games with chance
events, Goofspiel and Oshi-Zumo for simultaneous move games, and Leduc poker and Liar’s dice for imperfect
information games. For the rest of these steps, we assume Tic-Tac-Toe.

2. Copy the header and source: tic_tac_toe.h, tic_tac_toe.cc, and tic_tac_toe_test.cc to new_game.
h, new_game.cc, and new_game_test.cc (or tic_tac_toe.py and tic_tac_toe_test.py).

3. Configure CMake:

• If you are working with C++: add the new game’s source files to games/CMakeLists.txt.

• If you are working with C++: add the new game’s test target to games/CMakeLists.txt.

• If you are working with Python: add the test to python/CMakeLists.txt and import it in python/
games/__init__.py

4. Update boilerplate C++/Python code:

• In new_game.h, rename the header guard at the the top and bottom of the file.

• In the new files, rename the inner-most namespace from tic_tac_toe to new_game.

• In the new files, rename TicTacToeGame and TicTacToeState to NewGameGame and NewGameState.

• At the top of new_game.cc, change the short name to new_game and include the new game’s header.

5. Update Python integration tests:

• Add the short name to the list of expected games in python/tests/pyspiel_test.py.

6. You should now have a duplicate game of Tic-Tac-Toe under a different name. It should build and the test should
run, and can be verified by rebuilding and running the example examples/example --game=new_game.

7. Now, change the implementations of the functions in NewGameGame and NewGameState to reflect your new
game’s logic. Most API functions should be clear from the game you copied from. If not, each API function that
is overridden will be fully documented in superclasses in spiel.h.

8. Once done, rebuild and rerun the tests to ensure everything passes (including your new game’s test!).

9. Add a playthrough file to catch regressions:

• Run ./open_spiel/scripts/generate_new_playthrough.sh new_game to generate a random
game, to be used by integration tests to prevent any regression. open_spiel/integration_tests/
playthrough_test.py will automatically load the playthroughs and compare them to newly generated
playthroughs.

47

open_spiel Documentation

• If you have made a change that affects playthroughs, run ./scripts/regenerate_playthroughs.sh to
update them.

48 Chapter 12. Adding a game

CHAPTER

THIRTEEN

CONDITIONAL DEPENDENCIES

The goal is to make it possible to optionally include external dependencies and build against them. The setup was
designed to met the following needs:

• Single source of truth: We want a single action to be sufficient to manage the conditional install and build.
Thus, we use bash environment variables, that are read both by the install script (install.sh) to know whether
we should clone the dependency, and by CMake to know whether we should include the files in the target. Tests
can also access the bash environment variable.

• Light and safe defaults: By default, we exclude the dependencies to diminish install time and compilation time.
If the bash variable is unset, we download the dependency and we do not build against it.

• Respect the user-defined values: The global_variables.sh script, which is included in all the scripts that
needs to access the constant values, do not override the constants but set them if and only if they are undefined.
This respects the user-defined values, e.g. on their .bashrc or on the command line.

When you add a new conditional dependency, you need to touch:

• the root CMakeLists.txt to add the option, with an OFF default

• add the option to scripts/global_variables.sh

• change install.sh to make sure the dependency is installed

• use constructs like if (${OPEN_SPIEL_OPEN_SPIEL_BUILD_WITH_HANABI}) in CMake to optionally add the
targets to build.

49

open_spiel Documentation

50 Chapter 13. Conditional dependencies

CHAPTER

FOURTEEN

DEBUGGING TOOLS

For complex games it may be tricky to get all the details right. Reading through the playthrough You can visualize small
game trees using open_spiel/python/examples/treeviz_example.py or for large games there is an interactive viewer for
OpenSpiel games called SpielViz.

51

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/treeviz_example.py
https://github.com/michalsustr/spielviz

open_spiel Documentation

52 Chapter 14. Debugging tools

CHAPTER

FIFTEEN

GUIDELINES

Above all, OpenSpiel is designed to be easy to install and use, easy to understand, easy to extend (“hackable”), and
general/broad. OpenSpiel is built around two major important design criteria:

• Keep it simple. Simple choices are preferred to more complex ones. The code should be readable, usable, ex-
tendable by non-experts in the programming language(s), and especially to researchers from potentially different
fields. OpenSpiel provides reference implementations that are used to learn from and prototype with, rather
than fully-optimized / high-performance code that would require additional assumptions (narrowing the scope /
breadth) or advanced (or lower-level) language features.

• Keep it light. Dependencies can be problematic for long-term compatibility, maintenance, and ease-of- use.
Unless there is strong justification, we tend to avoid introducing dependencies to keep things easy to install and
more portable.

53

open_spiel Documentation

54 Chapter 15. Guidelines

CHAPTER

SIXTEEN

SUPPORT EXPECTATIONS

We, the OpenSpiel authors, definitely engage in supporting the community. As it can be time-consuming, we try to find
a good balance between ensuring we are responsive and being able to continue to do our day-to-day work and research.

Generally speaking, if you are willing to get a specific feature implemented, the most effective way is to implement it
and send a Pull Request. For large changes, or ones involving design decisions, open a bug to check the idea is ok first.

The higher the quality, the easier it will be to be accepted. For instance, following the C++ Google style guide and
Python Google style guide will help with the integration.

As examples, MacOS support, Window support, example improvements, various bug-fixes or new games has been
straightforward to be included and we are very thankful to everyone who helped.

16.1 Bugs

We aim to answer bugs at a reasonable pace, several times a week. However, for bugs involving large changes (e.g.
adding new games, adding public state supports) we cannot commit to implementing it and encourage everyone to
contribute directly.

16.2 Pull requests

You can expect us to answer/comment back and you will know from the comment if it will be merged as is or if it will
need additional work.

For pull requests, they are merged as batches to be more efficient, at least every two weeks (for bug fixes, it will likely
be faster to be integrated). So you may need to wait a little after it has been approved to actually see it merged.

55

https://google.github.io/styleguide/cppguide.html
http://google.github.io/styleguide/pyguide.html

open_spiel Documentation

56 Chapter 16. Support expectations

CHAPTER

SEVENTEEN

ROADMAP AND CALL FOR CONTRIBUTIONS

Contributions to this project must be accompanied by a Contributor License Agreement (CLA). See CONTRIBUT-
ING.md for the details.

Here, we outline our intentions for the future, giving an overview of what we hope to add over the coming years. We
also suggest a number of contributions that we would like to see, but have not had the time to add ourselves.

Before making a contribution to OpenSpiel, please read the guidelines. We also kindly request that you contact us
before writing any large piece of code, in case (a) we are already working on it and/or (b) it’s something we have
already considered and may have some design advice on its implementation. Please also note that some games may
have copyrights which might require legal approval. Otherwise, happy hacking!

The following list is both a Call for Contributions and an idealized road map. We certainly are planning to add some
of these ourselves (and, in some cases already have implementations that were just not tested well enough to make the
release!). Contributions are certainly not limited to these suggestions!

• AlphaZero. An implementation of AlphaZero. Preferably, an implementation that closely matches the pseudo-
code provided in the paper.

• Checkers / Draughts. This is a classic game and an important one in the history of game AI (”Checkers is
solved”).

• Chinese Checkers / Halma. Chinese Checkers is the canonical multiplayer (more than two player) perfect
information game. Currently, OpenSpiel does not contain any games in this category.

• Correlated Equilibrium. There is a simple linear program that can be solved to find a correlated equilibrium
in a normal-form game (see Section 4.6 of Shoham & Leyton-Brown ‘09). This would be a nice complement to
the existing solving of zero-sum games in python/algorithms/lp_solver.py.

• Deep TreeStrap. An implementation of TreeStrap (see Bootstrapping from Game Tree Search), except with a
DQN-like replay buffer, storing value targets obtained from minimax searches. We have an initial implementa-
tion, but it is not yet ready for release. We also hope to support PyTorch for this algorithm as well.

• Double Neural Counterfactual Regret Minimization. This is a technique similar to Regression CFR that uses
a robust sampling technique and a new network architecture that predicts both the cumulative regret and the
average strategy. (Ref)

• Differentiable Games and Algorithms. For example, Symplectic Gradient Adjustment (Ref).

• Emergent Communication Algorithms. For example, RIAL and/or DIAL and CommNet.

• Emergent Communication Games. Referential games such as the ones in Ref1, Ref2, Ref3.

• Extensive-form Evolutionary Dynamics. There have been a number of different evolutionary dynamics sug-
gested for the sequential games, such as state-coupled replicator dynamics (Ref), sequence-form replicator dy-
namics (Ref1, Ref2), sequence-form Q-learning (Ref), and the logit dynamics (Ref).

• Game Query/Customization API. There is no easy way to retrieve game-specific information since all the
algorithms interact with the general API only. But sometimes this is necessary, such as when a technique is

57

https://github.com/deepmind/open_spiel/blob/master/CONTRIBUTING
https://github.com/deepmind/open_spiel/blob/master/CONTRIBUTING
https://science.sciencemag.org/content/362/6419/1140
https://science.sciencemag.org/content/317/5844/1518
https://science.sciencemag.org/content/317/5844/1518
https://en.wikipedia.org/wiki/Chinese_checkers
http://masfoundations.org/
https://www.cse.unsw.edu.au/~blair/pubs/2009VenessSilverUtherBlairNIPS.pdf
https://arxiv.org/abs/1812.10607
https://arxiv.org/abs/1802.05642
https://arxiv.org/abs/1605.06676
https://arxiv.org/abs/1605.07736
https://arxiv.org/abs/1612.07182
https://arxiv.org/abs/1710.06922
https://arxiv.org/abs/1705.11192
https://dl.acm.org/citation.cfm?id=1558120
https://arxiv.org/abs/1304.1456
http://mlanctot.info/files/papers/aamas14sfrd-cfr-kuhn.pdf
https://dl.acm.org/citation.cfm?id=2892753.2892835
https://dl.acm.org/citation.cfm?id=3015889

open_spiel Documentation

being tested or specialized on one game. There is also no way to change the representation of observations
without changing the implementation of the game. This module would expose game-specific information via
queries and customization without having to hack the game implementations directly.

• General Games Wrapper. There are several general game engine languages and databases of general games
that currently exist, for example within the general game-playing project and the Ludii General Game System.
A very nice addition to OpenSpiel would be a game that interprets games represented in these languages and
presents them as OpenSpiel games. This could lead to the potential of evaluating learning agents on hundreds to
thousands of games.

• Go API. We currently have a prototype Go API similar to the Python API. It is exposed using cgo via a C API
much like the CFFI Python bindings from the Hanabi Learning Environment. It is not currently ready for release,
but should be possible in a future update.

• Grid Worlds. There are currently four grid world games in OpenSpiel: Markov soccer, the coin game, co-
operative box-pushing, and laser tag. There could be more, especially ones that have been commonly used in
multiagent RL. Also, the current grid worlds can be improved (they all are fully-observable).

• Heuristic Payoff Tables and Empirical Game-Theoretic Analysis. Methods found in Analyzing Complex
Strategic Interactions in Multi-Agent Systems, Methods for Empirical Game-Theoretic Analysis, An evolution-
ary game-theoretic analysis of poker strategies, Ref4.

• Monte Carlo Tree Search Solver. General enhancement to Monte Carlo tree search, backpropagate proven wins
and loses as far up as possible. See Winands el al. ‘08.

• Minimax-Q and other classic MARL algorithms. Minimax-Q is a classic multiagent reinforcement learning
algorithm (Markov games as a framework for multi-agent reinforcement learning. Other classic algorithms, such
as Correlated Q-learning, NashQ, and Friend-or-Foe Q-learning (Friend-or-foe q-learning in general-sum games
would be welcome as well.

• Nash Averaging. An evaluation tool first described in Re-evaluating Evaluation.

• Negotiation Games. A game similar to the negotiation game presented in Ref1, Ref2. Also, Colored Trails
(Modeling how Humans Reason about Others with Partial Information, Metastrategies in the coloredtrails game.

• Opponent Modeling / Shaping Algorithms. For example, DRON, LOLA, and Stable Opponent Shaping.

• PyTorch. While we officially support Tensorflow, the API is agnostic to the library that is used for learning. We
would like to have some examples and support for PyTorch as well in the future.

• Repeated Games. There is currently no explicit support for repeated games. Supporting repeated games as one
sequential game could be useful for application of RL algorithms. This could take the form of another game
transform, where intermediate rewards are given for game instances. It could also support random termination,
found in the literature and tournaments.

• Sequential Social Dilemmas. Sequential social dilemmas, such as the ones found in Ref1, Ref2 . Wolfpack
could be a nice one, since pursuit-evasion games have been common in the literature (Ref). Also the coin games
from Ref1 and Ref2, and Clamity, Cleanup and/or Harvest from Ref3 Ref4.

• Single-Agent Games and Environments. There are only a few single-player games or traditional RL environ-
ments (Klondike solitaire, catch, Deep Sea), despite the API supporting the use case. Games that fit into the
category, such as Morpion, Blackjack, and traditional RL environments such as grid worlds and others used to
learn RL would be welcome contributions.

• Structured Action Spaces. Currently, actions are integers between 0 and some value. There is no easy way to
interpret what each action means in a game-specific way. Nor is there any way to easily represent a composite
action in terms of its parts. A structured action space could represent actions as a sequence of values (like
information states and observations– and can also include shapes) which can be learned instead of mappings to
flat numbers. Then, each game could have a mapping from the structured action to the action taken.

58 Chapter 17. Roadmap and Call for Contributions

http://www.ggp.org/
http://www.ludii.games/index.html
https://golang.org/
https://github.com/deepmind/hanabi-learning-environment
https://www.semanticscholar.org/paper/Analyzing-Complex-Strategic-Interactions-in-Systems-Walsh-Das/43f70c076dbf53023df9f1337ee024f590779f75
https://www.semanticscholar.org/paper/Analyzing-Complex-Strategic-Interactions-in-Systems-Walsh-Das/43f70c076dbf53023df9f1337ee024f590779f75
https://www.semanticscholar.org/paper/Methods-for-Empirical-Game-Theoretic-Analysis-Wellman/39be2fc457124bae3141cfe458653bab9aece206
https://www.sciencedirect.com/science/article/pii/S1875952109000056
https://www.sciencedirect.com/science/article/pii/S1875952109000056
https://arxiv.org/abs/1803.06376
https://dke.maastrichtuniversity.nl/m.winands/documents/uctloa.pdf
https://www2.cs.duke.edu/courses/spring07/cps296.3/littman94markov.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-034.pdf
http://www.jmlr.org/papers/volume4/hu03a/hu03a.pdf
http://jmvidal.cse.sc.edu/library/littman01a.pdf
https://arxiv.org/abs/1806.02643
https://www.aclweb.org/anthology/D17-1259
https://arxiv.org/abs/1804.03980
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.114.7959&rep=rep1&type=pdf
http://www.ise.bgu.ac.il/faculty/kobi/Papers/main.pdf
https://arxiv.org/abs/1609.05559
https://arxiv.org/abs/1709.04326
https://arxiv.org/abs/1811.08469
https://arxiv.org/abs/1702.03037
https://arxiv.org/abs/1707.06600
http://web.media.mit.edu/~cynthiab/Readings/tan-MAS-reinfLearn.pdf
https://arxiv.org/abs/1707.01068
https://arxiv.org/abs/1709.04326
https://arxiv.org/abs/1812.07019
https://arxiv.org/abs/1810.08647
https://en.wikipedia.org/wiki/Join_Five

open_spiel Documentation

• TF_Trajectories. The source code currently includes a batch inference for running a batch of episodes using
Tensorflow directly from C++ (in contrib/). It has not yet been tested with CMake and public Tensorflow. We
would like to officially support this and move it into the core library.

• Visualizations of games. There exists an interactive viewer for OpenSpiel games called SpielViz. Contributions
to this project are welcome.

59

https://github.com/michalsustr/spielviz

open_spiel Documentation

60 Chapter 17. Roadmap and Call for Contributions

CHAPTER

EIGHTEEN

AUTHORS

Names are ordered lexicographically. Typo or similar contributors are omitted.

18.1 OpenSpiel contributors

• Bart De Vylder

• Edward Hughes

• Edward Lockhart locked@google.com

• Daniel Hennes

• David Ding

• Dustin Morrill

• Elnaz Davoodi

• Finbarr Timbers

• Ivo Danihelka

• Jean-Baptiste Lespiau jblespiau@google.com

• Janos Kramar

• Jonah Ryan-Davis

• Julian Schrittwieser

• Julien Perolat

• Karl Tuyls

• Manuel Kroiss

• Marc Lanctot lanctot@google.com

• Matthew Lai

• Michal Sustr michal.sustr@aic.fel.cvut.cz

• Raphael Marinier

• Paul Muller

• Ryan Faulkner

• Satyaki Upadhyay

• Sebastian Borgeaud

61

mailto:locked@google.com
mailto:jblespiau@google.com
mailto:lanctot@google.com
mailto:michal.sustr@aic.fel.cvut.cz

open_spiel Documentation

• Sertan Girgin

• Shayegan Omidshafiei

• Srinivasan Sriram

• Thomas Anthony

• Thomas Köppe

• Timo Ewalds tewalds@google.com

• Vinicius Zambaldi vzambaldi@google.com

18.2 OpenSpiel with Swift for Tensorflow (now removed)

• James Bradbury jekbradbury@google.com

• Brennan Saeta saeta@google.com

• Dan Zheng danielzheng@google.com

18.3 External contributors

See https://github.com/deepmind/open_spiel/graphs/contributors.

62 Chapter 18. Authors

mailto:tewalds@google.com
mailto:vzambaldi@google.com
mailto:jekbradbury@google.com
mailto:saeta@google.com
mailto:danielzheng@google.com

	What is OpenSpiel?
	Installation
	Python-only installation via pip
	Python-only installation via pip (from source).

	Installation from Source
	Summary
	Installing via Docker
	Running the first examples
	Detailed steps
	Configuration conditional dependencies
	Installing system-wide dependencies
	Installing Python dependencies
	Building and running tests
	Setting Your PYTHONPATH environment variable

	First examples
	Concepts
	The tree representation

	Loading a game
	Creating sequential games from simultaneous games

	Playing a trajectory
	Available games
	Details
	Backgammon
	Battleship
	Blackjack
	Breakthrough
	Bridge
	(Uncontested) Bridge bidding
	Catch
	Cliff Walking
	Clobber
	Coin Game
	Connect Four
	Cooperative Box-Pushing
	Chess
	Dark Hex
	Deep Sea
	First-price Sealed-Bid Auction
	Gin Rummy
	Go
	Goofspiel
	Hanabi
	Havannah
	Hearts
	Hex
	Kriegspiel
	Kuhn poker
	Laser Tag
	Leduc poker
	Lewis Signaling
	Liar’s Dice
	Markov Soccer
	Matching Pennies (Three-player)
	Mean Field Game : routing
	Negotiation
	Oh Hell
	Oshi-Zumo
	Oware
	Pentago
	Phantom Tic-Tac-Toe
	Pig
	Poker (Hold ‘em)
	Quoridor
	Reconnaissance Blind Chess
	Routing game
	Sheriff
	Slovenian Tarok
	Skat (simplified bidding)
	Solitaire (K+)
	Tic-Tac-Toe
	Tiny Bridge
	Tiny Hanabi
	Trade Comm
	Y

	α-Rank
	Importing the Alpha-Rank module
	Running Alpha-Rank on various games
	Example: symmetric 2-player game rankings
	Example: multi-population game rankings

	Visualizing and reporting results
	Basic Ranking Outputs
	Markov Chain Visualization
	Alpha-sweep plots

	Julia OpenSpiel
	Install
	Known Problems
	Example
	Q&A

	The code structure
	C++ and Python implementations.
	Adding a game
	Conditional dependencies
	Debugging tools
	Guidelines
	Support expectations
	Bugs
	Pull requests

	Roadmap and Call for Contributions
	Authors
	OpenSpiel contributors
	OpenSpiel with Swift for Tensorflow (now removed)
	External contributors

