
open_spiel Documentation

The open_spiel authors

Mar 14, 2024

GETTING STARTED

1 What is OpenSpiel? 1

2 Installation 3
2.1 Python-only installation via pip . 3
2.2 Installation from Source . 4
2.3 Summary . 4
2.4 Installing via Docker . 5
2.5 Running the first examples . 6
2.6 Detailed steps . 6

3 First examples 9

4 Concepts 11
4.1 The tree representation . 11

5 Loading a game 13
5.1 Creating sequential games from simultaneous games . 13

6 Playing a trajectory 15

7 OpenSpiel Core API Reference 17
7.1 Core Functions . 17
7.2 State methods . 17
7.3 Game methods . 17

8 Available algorithms 19

9 Available games 21
9.1 Details . 21

10 -Rank 43
10.1 Importing the Alpha-Rank module . 43
10.2 Running Alpha-Rank on various games . 43
10.3 Visualizing and reporting results . 45

11 Julia OpenSpiel 49
11.1 Install . 49
11.2 Known Problems . 49
11.3 Example . 50
11.4 Q&A . 51

i

12 AlphaZero 53
12.1 Background . 53
12.2 Overview: . 53
12.3 Usage: . 55

13 The code structure 57

14 C++ and Python implementations. 59

15 Adding a game 61

16 Conditional dependencies 63

17 Debugging tools 65

18 Adding Game-Specific Functionality 67

19 Language APIs 69

20 Guidelines 71

21 Support expectations 73
21.1 Bugs . 73
21.2 Pull requests . 73

22 Roadmap and Call for Contributions 75

23 Using OpenSpiel as a C++ Library 77
23.1 Install Dependencies . 77
23.2 Compiling OpenSpiel as a Shared Library . 77
23.3 Compiling and Running the Example . 78

24 Authors 79
24.1 OpenSpiel contributors . 79
24.2 OpenSpiel with Swift for Tensorflow (now removed) . 80
24.3 External contributors . 80

ii

CHAPTER

ONE

WHAT IS OPENSPIEL?

OpenSpiel is a collection of environments and algorithms for research in general reinforcement learning and
search/planning in games. OpenSpiel also includes tools to analyze learning dynamics and other common evaluation
metrics. Games are represented as procedural extensive-form games, with some natural extensions.

Open Spiel supports

• Single and multi-player games

• Fully observable (via observations) and imperfect information games (via information states and observations)

• Stochasticity (via explicit chance nodes mostly, even though implicit stochasticity is partially supported)

• n-player normal-form “one-shot” games and (2-player) matrix games

• Sequential and simultaneous move games

• Zero-sum, general-sum, and cooperative (identical payoff) games

Multi-language support

• C++17

• Python 3

The games and utility functions (e.g. exploitability computation) are written in C++. These are also available using
pybind11 Python bindings.

The methods names are in CamelCase in C++ and snake_case in Python (e.g. state.ApplyAction in C++ will be
state.apply_action in Python). See the pybind11 definition in open_spiel/python/pybind11/pyspiel.cc for the full
mapping between names.

For algorithms, many are written in both languages, even if some are only available from Python.

Platforms

OpenSpiel has been tested on Linux (Ubuntu and Debian), MacOS. There is limited support for on Windows 10.

Visualization of games

There is a basic visualizer based on graphviz, see open_spiel/python/examples/treeviz_example.py.

There is an interactive viewer for OpenSpiel games called SpielViz.

1

https://pybind11.readthedocs.io/en/stable/
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/pybind11/pyspiel.cc
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/treeviz_example.py
https://github.com/michalsustr/spielviz

open_spiel Documentation

2 Chapter 1. What is OpenSpiel?

CHAPTER

TWO

INSTALLATION

2.1 Python-only installation via pip

If you plan to only use the Python API, then the easiest way to install OpenSpiel is to use pip. On MacOS or Linux,
simply run:

python3 -m pip install open_spiel

The binary distribution is new as of OpenSpiel 1.0.0, and is only supported on x86_64 architectures. If you encounter
any problems, you can still install OpenSpiel via pip from source (see below), but please open an issue to let us know
about the problem.

2.1.1 Python-only installation via pip (from source).

If the binary distribution is not an option, you can also build OpenSpiel via pip from source. CMake, Clang and Python
3 development files are required to build the Python extension. Note that we recommend Clang but g++ >= 9.2 should
also work.

E.g. on Ubuntu or Debian:

Check to see if you have the necessary tools for building OpenSpiel:
cmake --version # Must be >= 3.17
clang++ --version # Must be >= 7.0.0
python3-config --help

If not, run this line to install them.
On older Linux distros, the package might be called clang-9 or clang-10
sudo apt-get install cmake clang python3-dev

On older Linux distros, the versions may be too old.
E.g. on Ubuntu 18.04, there are a few extra steps:
sudo apt-get install clang-10
pip3 install cmake # You might need to relogin to get the new CMake version
export CXX=clang++-10

Recommended: Install pip dependencies and run under virtualenv.
sudo apt-get install virtualenv python3-virtualenv
virtualenv -p python3 venv
source venv/bin/activate

(continues on next page)

3

open_spiel Documentation

(continued from previous page)

Finally, install OpenSpiel and its dependencies:
python3 -m pip install --upgrade setuptools pip
python3 -m pip install --no-binary=:open_spiel: open_spiel

To exit the virtual env
deactivate

IMPORTANT NOTE. If the build fails, please first make sure you have the
required versions of the tools above and that you followed the recommended
option. Then, open an issue: https://github.com/deepmind/open_spiel/issues

Note that the build could take several minutes.

On MacOS, you can install the dependencies via brew install cmake python3. For clang, you need to install or
upgrade XCode and install the command-line developer tools.

2.2 Installation from Source

The instructions here are for Linux and MacOS. For installation on Windows, see these separate installation instructions.
On Linux, we recommend Ubuntu 22.04, Debian 10, or later versions. On MacOS, we recommend XCode 11 or newer.
For the Python API: our tests run using Python versions 3.7 - 3.10. If you encounter any problems on other setups,
please let us know by opening an issue.

Currently there are three installation methods:

1. building from the source code and editing PYTHONPATH.

2. using pip install to build and testing using nox.

3. installing via Docker.

2.3 Summary

In a nutshell:

./install.sh # Needed to run once and when major changes are released.

./open_spiel/scripts/build_and_run_tests.sh # Run this every-time you need to rebuild.

1. (Optional) Configure Conditional Dependencies.

2. Install system packages (e.g. cmake) and download some dependencies. Only needs to be run once or if you
enable some new conditional dependencies.

./install.sh

3. Install your Python dependencies, e.g. in Python 3 using virtualenv:

virtualenv -p python3 venv
source venv/bin/activate

Use deactivate to quit the virtual environment.

pip should be installed once and upgraded:

4 Chapter 2. Installation

https://nox.thea.codes/en/stable/
https://www.docker.com
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/

open_spiel Documentation

curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py
Install pip deps as your user. Do not use the system's pip.
python3 get-pip.py
pip3 install --upgrade pip
pip3 install --upgrade setuptools testresources

Additionally, if you intend to use one of the optional Python dependencies (see open_spiel/scripts/install.sh), you
must manually install and/or upgrade them, e.g.: bash pip install --upgrade torch==x.xx.x jax==x.
x.x where x.xx.x should be the desired version numbers (which can be found at the link above).

4. This sections differs depending on the installation procedure:

Building and testing from source

python3 -m pip install -r requirements.txt
./open_spiel/scripts/build_and_run_tests.sh

Building and testing using PIP

python3 -m pip install .
python3 -m pip install nox
nox -s tests

Optionally, use pip install -e to install in editable mode, which will allow you to skip this pip install
step if you edit any Python source files. If you edit any C++ files, you will have to rerun the install command.

5. Only when building from source:

For the python modules in open_spiel.
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>
For the Python bindings of Pyspiel
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>/build/python

to ./venv/bin/activate or your ~/.bashrc to be able to import OpenSpiel from anywhere.

To make sure OpenSpiel works on the default configurations, we do use the python3 command and not python (which
still defaults to Python 2 on modern Linux versions).

2.4 Installing via Docker

Please note that we don’t regularly test the Docker installation. As such, it may not work at any given time. If you
encounter a problem, please open an issue.

Option 1 (Basic, 3.13GB):

docker build --target base -t openspiel -f Dockerfile.base .

Option 2 (Slim, 2.26GB):

docker build --target python-slim -t openspiel -f Dockerfile.base .

If you are only interested in developing in Python, use the second image. You can navigate through the runtime of the
container (after the build step) with:

2.4. Installing via Docker 5

https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh
https://pip.pypa.io/en/stable/reference/pip_install/#editable-installs
https://github.com/deepmind/open_spiel/issues

open_spiel Documentation

docker run -it --entrypoint /bin/bash openspiel

Finally you can run examples using:

docker run openspiel python3 python/examples/matrix_game_example.py
docker run openspiel python3 python/examples/example.py

Option 3 (Jupyter Notebook):

Installs OpenSpiel with an additional Jupyter Notebook environment.

docker build -t openspiel-notebook -f Dockerfile.jupyter --rm .
docker run -it --rm -p 8888:8888 openspiel-notebook

More info: https://jupyter-docker-stacks.readthedocs.io/en/latest/

2.5 Running the first examples

In the build directory, running examples/example will prints out a list of registered games and the usage. Now, let’s
play game of Tic-Tac-Toe with uniform random players:

examples/example --game=tic_tac_toe

Once the proper Python paths are set, from the main directory (one above build), try these out:

Similar to the C++ example:
python3 open_spiel/python/examples/example.py --game_string=breakthrough

Play a game against a random or MCTS bot:
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --
→˓player2=random
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --
→˓player2=mcts

2.6 Detailed steps

2.6.1 Configuring conditional dependencies

Conditional dependencies are configured using environment variables, e.g.

export OPEN_SPIEL_BUILD_WITH_HANABI=ON

install.sh may need to be rerun after enabling new conditional dependencies.

See open_spiel/scripts/global_variables.sh for the full list of conditional dependencies.

See also the Developer Guide.

6 Chapter 2. Installation

https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/global_variables.sh
developer_guide.md#conditional-dependencies

open_spiel Documentation

2.6.2 Installing system-wide dependencies

See open_spiel/scripts/install.sh for the required packages and cloned repositories.

2.6.3 Installing Python dependencies

Using a virtualenv to install python dependencies is highly recommended. For more information see: https:
//packaging.python.org/guides/installing-using-pip-and-virtual-environments/

Required dependencies

Install required dependencies (Python 3):

Ubuntu 22.04 and newer:
python3 -m venv ./venv
source venv/bin/activate
python3 -m pip install -r requirements.txt
Older than Ubuntu 22.04:
virtualenv -p python3 venv
source venv/bin/activate
python3 -m pip install -r requirements.txt

Alternatively, although not recommended, you can install the Python dependencies system-wide with:

python3 -m pip install --upgrade -r requirements.txt

Optional dependencies

Additionally, if you intend to use one of the optional Python dependencies (see open_spiel/scripts/install.sh), you must
manually install and/or upgrade them. The installation scripts will not install or upgrade these dependencies. e.g.:

python3 -m pip install --upgrade torch==x.xx.x jax==x.x.x

where x.xx.x should be the desired version numbers (which can be found at the link above).

2.6.4 Building and running tests

Make sure that the virtual environment is still activated.

By default, Clang C++ compiler is used (and potentially installed by open_spiel/scripts/install.sh).

Build and run tests (Python 3):

mkdir build
cd build
CXX=clang++ cmake -DPython3_EXECUTABLE=$(which python3) -DCMAKE_CXX_COMPILER=${CXX} ../
→˓open_spiel
make -j$(nproc)
ctest -j$(nproc)

2.6. Detailed steps 7

https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://packaging.python.org/guides/installing-using-pip-and-virtual-environments/
https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh
https://github.com/deepmind/open_spiel/blob/master/open_spiel/scripts/install.sh

open_spiel Documentation

The CMake variable Python3_EXECUTABLE is used to specify the Python interpreter. If the variable is not set, CMake’s
FindPython3 module will prefer the latest version installed. Note, Python >= 3.7 is required.

One can run an example of a game running (in the build/ folder):

./examples/example --game=tic_tac_toe

2.6.5 Setting Your PYTHONPATH environment variable

To be able to import the Python code (both the C++ binding pyspiel and the rest) from any location, you will need to
add to your PYTHONPATH the root directory and the open_spiel directory.

When using a virtualenv, the following should be added to <virtualenv>/bin/activate. For a system-wide install,
ddd it in your .bashrc or .profile.

For the python modules in open_spiel.
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>
For the Python bindings of Pyspiel
export PYTHONPATH=$PYTHONPATH:/<path_to_open_spiel>/build/python

8 Chapter 2. Installation

CHAPTER

THREE

FIRST EXAMPLES

One can run an example of a game running (in the build/ folder):

./examples/example --game=tic_tac_toe

Similar examples using the Python API (run from one above build):

Similar to the C++ example:
python3 open_spiel/python/examples/example.py --game_string=breakthrough

Play a game against a random or MCTS bot:
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --
→˓player2=random
python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --
→˓player2=mcts

9

open_spiel Documentation

10 Chapter 3. First examples

CHAPTER

FOUR

CONCEPTS

The following documentation describes the high-level concepts. Refer to the code comments for specific API descrip-
tions.

Note that, in English, the word “game” is used for both the description of the rules (e.g. the game of chess) and for a
specific instance of a playthrough (e.g. “we played a game of chess yesterday”). We will be using “playthrough” or
“trajectory” to refer to the second concept.

The methods names are in CamelCase in C++ and snake_case in Python without any other difference (e.g. state.
ApplyAction in C++ will be state.apply_action in Python).

4.1 The tree representation

There are mainly 2 concepts to know about (defined in open_spiel/spiel.h):

• A Game object contains the high level description for a game (e.g. whether it is simultaneous or sequential, the
number of players, the maximum and minimum scores).

• A State, which describe a specifics point (e.g. a specific board position in chess, a specific set of player cards,
public cards and past bets in Poker) within a trajectory.

All possible trajectories in a game are represented as a tree. In this tree, a node is a State and is associated to a specific
history of moves for all players. Transitions are actions taken by players (in case of a simultaneous node, the transition
is composed of the actions for all players).

Note that in most games, we deal with chance (i.e. any source of randomness) using a an explicit player (the “chance”
player, which has id kChancePlayerId). For example, in Poker, the root state would just be the players without any
cards, and the first transitions will be chance nodes to deal the cards to the players (in practice once card is dealt per
transition).

See spiel.h for the full API description. For example, game.NewInitialState() will return the root State. Then,
state.LegalActions() can be used to get the possible legal actions and state.ApplyAction(action) can be
used to update state in place to play the given action (use state.Child(action) to create a new state and apply
the action to it).

11

https://github.com/deepmind/open_spiel/blob/master/open_spiel/spiel.h

open_spiel Documentation

12 Chapter 4. Concepts

CHAPTER

FIVE

LOADING A GAME

The games are all implemented in C++ in open_spiel/games. Available games names can be listed using
RegisteredNames().

A game can be created from its name and its arguments (which usually have defaults). There are 2 ways to create a
game:

• Using the game name and a structured GameParameters object (which, in Python, is a dictionary from argument
name to compatible types (int, bool, str or a further dict). e.g. {"players": 3} with LoadGame.

• Using a string representation such as kuhn_poker(players=3), giving
LoadGame(kuhn_poker(players=3)). See open_spiel/game_parameters.cc for the exact syntax.

5.1 Creating sequential games from simultaneous games

It is possible to apply generic game transformations (see open_spiel/game_transforms/) such as loading an n-players
simultaneous games into an equivalent turn-based game where simultaneous moves are encoded as n turns.

One can use LoadGameAsTurnBased(game), or use the string representation, such
as turn_based_simultaneous_game(game=goofspiel(imp_info=True,num_cards=4,
points_order=descending)).

13

https://github.com/deepmind/open_spiel/blob/master/open_spiel/games
https://github.com/deepmind/open_spiel/blob/master/open_spiel/game_transforms/

open_spiel Documentation

14 Chapter 5. Loading a game

CHAPTER

SIX

PLAYING A TRAJECTORY

Here are for example the Python code to play one trajectory:

import random
import pyspiel
import numpy as np

game = pyspiel.load_game("kuhn_poker")
state = game.new_initial_state()
while not state.is_terminal():
legal_actions = state.legal_actions()
if state.is_chance_node():
Sample a chance event outcome.
outcomes_with_probs = state.chance_outcomes()
action_list, prob_list = zip(*outcomes_with_probs)
action = np.random.choice(action_list, p=prob_list)
state.apply_action(action)

else:
The algorithm can pick an action based on an observation (fully observable
games) or an information state (information available for that player)
We arbitrarily select the first available action as an example.
action = legal_actions[0]
state.apply_action(action)

See open_spiel/python/examples/example.py for a more thorough example that covers more use of the core API.

See open_spiel/python/examples/playthrough.py (and open_spiel/python/algorithms/generate_playthrough.py) for an
richer example generating a playthrough and printing all available information.

In C++, see open_spiel/examples/example.cc which generates random trajectories.

15

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/example.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/playthrough.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/generate_playthrough.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/examples/example.cc

open_spiel Documentation

16 Chapter 6. Playing a trajectory

CHAPTER

SEVEN

OPENSPIEL CORE API REFERENCE

OpenSpiel consists of several core functions and classes. This page acts as a helpful reminder of how to use the main
functionality of OpenSpiel.

Most of the functions are described and illustrated via Python syntax and examples, and there are pointers to the
corresponding C++ functions.

Disclaimer: This is meant as a guide to facilitate OpenSpiel development in Python. However, spiel.h remains the
single source of truth for documentation on the core API.

7.1 Core Functions

7.2 State methods

7.3 Game methods

17

https://github.com/deepmind/open_spiel/blob/master/open_spiel/spiel.h

open_spiel Documentation

18 Chapter 7. OpenSpiel Core API Reference

CHAPTER

EIGHT

AVAILABLE ALGORITHMS

: thoroughly-tested. In many cases, we verified against known values and/or reproduced results from papers.

~: implemented but lightly tested.

X: known problems; please see github issues.

19

open_spiel Documentation

20 Chapter 8. Available algorithms

CHAPTER

NINE

AVAILABLE GAMES

: thoroughly-tested. In many cases, we verified against known values and/or reproduced results from papers.

: implemented but lightly tested.

: known issues (see notes below and code for details).

9.1 Details

9.1.1 2048

• A single player game where player aims to create a 2048 tile by merging other tiles.

• Numbers on a grid.

• Modern game.

• Non-deterministic.

• Perfect information.

• 1 player.

• Github

9.1.2 Amazons

• Move pieces on a board trying to block opponents from moving.

• Pieces on a grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

21

https://github.com/gabrielecirulli/2048
https://en.wikipedia.org/wiki/Game_of_the_Amazons

open_spiel Documentation

9.1.3 Atari

• Agent plays classic games from Gym’s Atari Environments, such as Breakout.

• Single player.

• Most games are non-deterministic.

• Perfect information.

9.1.4 Backgammon

• Players move their pieces through the board based on the rolls of dice.

• Idiosyncratic format.

• Traditional game.

• Non-deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.5 Bargaining

• Agents negotiate for items in a pool with different (hidden) valuations.

• Research game.

• Non-deterministic (randomized pool and valuations).

• Imperfect information.

• 2 players.

• Lewis et al. ‘17, DeVault et al. ‘15

9.1.6 Battleship

• Players place ships and shoot at each other in turns.

• Pieces on a board.

• Traditional game.

• Deterministic.

• Imperfect information.

• 2 players.

• Good for correlated equilibria.

• Farina et al. ‘19, Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks. Based on
the original game (wikipedia)

22 Chapter 9. Available games

https://www.gymlibrary.dev/environments/atari/
https://en.wikipedia.org/wiki/Backgammon
https://arxiv.org/abs/1706.05125
https://www.aaai.org/ocs/index.php/SSS/SSS15/paper/viewFile/10335/10100
https://papers.nips.cc/paper/9122-correlation-in-extensive-form-games-saddle-point-formulation-and-benchmarks.pdf
https://en.wikipedia.org/wiki/Battleship_(game)

open_spiel Documentation

9.1.7 Blackjack

• Simplified version of blackjack, with only HIT/STAND moves.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 1 player.

• Wikipedia

9.1.8 Block Dominoes

• Most simple version of dominoes.

• Consists of 28 tiles, featuring all combinations of spot counts (also called pips or dots) between zero and six.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

9.1.9 Breakthrough

• Simplified chess using only pawns.

• Pieces on a grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.10 Bridge

• A card game where players compete in pairs.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 4 players.

• Wikipedia

9.1. Details 23

https://en.wikipedia.org/wiki/Blackjack
https://en.wikipedia.org/wiki/Breakthrough_(board_game)
https://en.wikipedia.org/wiki/Contract_bridge

open_spiel Documentation

9.1.11 (Uncontested) Bridge bidding

• Players score points by forming specific sets with the cards in their hands.

• Card game.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

9.1.12 Catch

• Agent must move horizontally to ‘catch’ a descending ball. Designed to test basic learning.

• Agent on a grid.

• Research game.

• Non-deterministic.

• Perfect information.

• 1 players.

• Mnih et al. 2014, Recurrent Models of Visual Attention,Osband et al ‘19, Behaviour Suite for Reinforcement
Learning, Appendix A

9.1.13 Checkers

• Players move pieces around the board with the goal of eliminating the opposing pieces.

• Pieces on a grid.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.14 Cliff Walking

• Agent must find goal without falling off a cliff. Designed to demonstrate exploration-with-danger.

• Agent on a grid.

• Research game.

• Deterministic.

• Perfect information.

• 1 players.

24 Chapter 9. Available games

https://en.wikipedia.org/wiki/Contract_bridge
https://papers.nips.cc/paper/5542-recurrent-models-of-visual-attention.pdf
https://arxiv.org/abs/1908.03568
https://arxiv.org/abs/1908.03568
https://en.wikipedia.org/wiki/Checkers

open_spiel Documentation

• Sutton et al. ‘18, page 132

9.1.15 Clobber

• Simplified checkers, where tokens can capture neighbouring tokens. Designed to be amenable to combinatorial
analysis.

• Pieces on a grid.

• Research game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.16 Coin Game

• Agents must collect their and their collaborator’s tokens while avoiding a third kind of token. Designed to test
divining of collaborator’s intentions

• Agents on a grid.

• Research game.

• Non-deterministic.

• Imperfect information (all players see the grid and their own preferences, but not the preferences of other players).

• 2 players.

• Raileanu et al. ‘18, Modeling Others using Oneself in Multi-Agent Reinforcement Learning

9.1.17 Colored Trails

• Agents negotiations for chips that they they play on a colored grid to move closer to the goal.

• Agents on a grid.

• Research game.

• Non-deterministic (randomized board & chip configuration).

• Imperfect information.

• 3 players.

• Ya’akov et al. ‘10, Fecici & Pfeffer ‘08, de Jong et al. ‘11

9.1. Details 25

http://www.incompleteideas.net/book/bookdraft2018mar21.pdf
https://en.wikipedia.org/wiki/Clobber
https://arxiv.org/abs/1802.09640
https://dash.harvard.edu/handle/1/4726287
https://dl.acm.org/doi/10.5555/1402383.1402431
https://www.ifaamas.org/Proceedings/aamas2011/papers/C4_R57.pdf

open_spiel Documentation

9.1.18 Connect Four

• Players drop tokens into columns to try and form a pattern.

• Tokens on a grid.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.19 Cooperative Box-Pushing

• Agents must collaborate to push a box into the goal. Designed to test collaboration.

• Agents on a grid.

• Research game.

• Deterministic.

• Perfect information.

• 2 players.

• Seuken & Zilberstein ‘12, Improved Memory-Bounded Dynamic Programming for Decentralized POMDPs

9.1.20 Chess

• Players move pieces around the board with the goal of eliminating the opposing pieces.

• Pieces on a grid.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.21 Dots and Boxes

• Players put lines between dots to form boxes to get points.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

26 Chapter 9. Available games

https://en.wikipedia.org/wiki/Connect_Four
https://arxiv.org/abs/1206.5295
https://en.wikipedia.org/wiki/Chess
https://en.wikipedia.org/wiki/Dots_and_Boxes

open_spiel Documentation

9.1.22 Crazy Eights

• A precursor of UNO (see here).

• Players try to match the rank or suit of the previous played card.

• Eights are viewed as wild cards.

• In an alternative version, special cards such as skip, reverse, draw-two are permitted.

• Nondeterministic.

• Imperfect information.

• =2 players.

• Wikipedia

9.1.23 Dark Hex

• Hex, except the opponent’s tokens are hidden. (Imperfect-information version)

• Uses tokens on a hex grid.

• Research game.

• Deterministic.

• Imperfect information.

• 2 players.

9.1.24 Deep Sea

• Agent must explore to find reward (first version) or penalty (second version). Designed to test exploration.

• Agent on a grid.

• Research game.

• Deterministic.

• Perfect information.

• 1 players.

• Osband et al. ‘17, Deep Exploration via Randomized Value Functions

9.1.25 Dou Dizhu

• A three-player games where one player (dizhu) plays against a team of two (peasants).

• Uses a 54-card deck.

• Non-deterministic.

• Imperfect information.

• Three players.

• Wikipedia

9.1. Details 27

https://www.unorules.org/crazy-eights/
https://en.wikipedia.org/wiki/Crazy_Eights
https://arxiv.org/abs/1703.07608
https://en.wikipedia.org/wiki/Dou_dizhu

open_spiel Documentation

9.1.26 Euchre

• Trick-taking card game where players compete in pairs.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 4 players.

• Wikipedia

9.1.27 First-price Sealed-Bid Auction

• Agents submit bids simultaneously; highest bid wins, and that’s the price paid.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect, incomplete information.

• 2-10 players.

• Wikipedia

9.1.28 Gin Rummy

• Players score points by forming specific sets with the cards in their hands.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

9.1.29 Go

• Players place tokens on the board with the goal of encircling territory.

• Tokens on a grid.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

28 Chapter 9. Available games

https://en.wikipedia.org/wiki/Euchre
https://en.wikipedia.org/wiki/First-price_sealed-bid_auction
https://en.wikipedia.org/wiki/Gin_rummy
https://en.wikipedia.org/wiki/Go_(game)

open_spiel Documentation

9.1.30 Goofspiel

• Players bid with their cards to win other cards.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 2-10 players.

• Wikipedia

9.1.31 Hanabi

• Players can see only other player’s pieces, and everyone must cooperate to win.

• Idiosyncratic format.

• Modern game.

• Non-deterministic.

• Imperfect information.

• 2-5 players.

• Wikipedia and Bard et al. ‘19, The Hanabi Challenge: A New Frontier for AI Research

• Implemented via Hanabi Learning Environment

9.1.32 Havannah

• Players add tokens to a hex grid to try and form a winning structure.

• Tokens on a hex grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.33 Hearts

• A card game where players try to avoid playing the highest card in each round.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 3-6 players.

9.1. Details 29

https://en.wikipedia.org/wiki/Goofspiel
https://en.wikipedia.org/wiki/Hanabi_(card_game)
https://arxiv.org/abs/1902.00506
https://github.com/deepmind/hanabi-learning-environment
https://en.wikipedia.org/wiki/Havannah

open_spiel Documentation

• Wikipedia

9.1.34 Hex

• Players add tokens to a hex grid to try and link opposite sides of the board.

• Uses tokens on a hex grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

• Hex, the full story by Ryan Hayward and Bjarne Toft

9.1.35 Kriegspiel

• Chess with opponent’s pieces unknown. Illegal moves have no effect - it remains the same player’s turn until
they make a legal move.

• Traditional chess variant, invented by Henry Michael Temple in 1899.

• Deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

• Monte Carlo tree search in Kriegspiel

• Game-Tree Search with Combinatorially Large Belief States, Parker 2005

9.1.36 Kuhn poker

• Simplified poker amenable to game-theoretic analysis.

• Cards with bidding.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

30 Chapter 9. Available games

https://en.wikipedia.org/wiki/Hearts_(card_game)
https://en.wikipedia.org/wiki/Hex_(board_game)
https://webdocs.cs.ualberta.ca/~hayward/hexbook/hex.html
https://en.wikipedia.org/wiki/Kriegspiel_(chess)
https://www.ics.uci.edu/~dechter/courses/ics-295/fall-2019/papers/2010-mtc-aij.pdf
https://www.cs.umd.edu/~nau/papers/parker2005game-tree.pdf
https://en.wikipedia.org/wiki/Kuhn_poker

open_spiel Documentation

9.1.37 Laser Tag

• Agents see a local part of the grid, and attempt to tag each other with beams.

• Agents on a grid.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Leibo et al. ‘17, Lanctot et al. ‘17

9.1.38 Leduc poker

• Simplified poker amenable to game-theoretic analysis.

• Cards with bidding.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Southey et al. ‘05, Bayes’ bluff: Opponent modelling in poker

9.1.39 Lewis Signaling

• Receiver must choose an action dependent on the sender’s hidden state. Designed to demonstrate the use of
conventions.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Wikipedia

9.1.40 Liar’s Dice

• Players bid and bluff on the state of all the dice together, given only the state of their dice.

• Dice with bidding.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 2 players.

9.1. Details 31

https://arxiv.org/abs/1702.03037
https://arxiv.org/abs/1711.00832
https://arxiv.org/abs/1207.1411
https://en.wikipedia.org/wiki/Lewis_signaling_game

open_spiel Documentation

• Wikipedia

9.1.41 Liar’s Poker

• Players bid and bluff on the state of all hands, given only the state of their hand.

• Cards with bidding.

• Traditional game.

• Non-deterministic.

• Imperfect information

• 2 or more players.

• Wikipedia

9.1.42 Mensch Aergere Dich Nicht

• Players roll dice to move their pegs toward their home row while throwing other players’ pegs to the out area.

• Traditional game.

• Non-deterministic.

• Perfect information.

• 2-4 players.

• Wikipedia

9.1.43 Mancala

• Players take turns sowing beans on the board and try to capture more beans than the opponent.

• Idiosyncratic format.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.44 Markov Soccer

• Agents must take the ball to their goal, and can ‘tackle’ the opponent by predicting their next move.

• Agents on a grid.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

32 Chapter 9. Available games

https://en.wikipedia.org/wiki/Liar%27s_dice
https://en.wikipedia.org/wiki/Liar%27s_poker
https://en.wikipedia.org/wiki/Mensch_%C3%A4rgere_Dich_nicht
https://en.wikipedia.org/wiki/Kalah

open_spiel Documentation

• Littman ‘94, Markov games as a framework for multi-agent reinforcement learning,He et al. ‘16, Opponent
Modeling in Deep Reinforcement Learning

9.1.45 Matching Pennies (Three-player)

• Players must predict and match/oppose another player. Designed to have an unstable Nash equilibrium.

• Idiosyncratic format.

• Research game.

• Deterministic.

• Imperfect information.

• 3 players.

• “Three problems in learning mixed-strategy Nash equilibria”

9.1.46 Mean Field Game : routing

• Representative player chooses at each node where they go. They has an origin, a destination and a departure time
and chooses their route to minimize their travel time. Time spent on each link is a function of the distribution of
players on the link when the player reaches the link.

• Network with choice of route.

• Research game.

• Mean-field (with a unique player).

• Explicit stochastic game (only for initial node).

• Perfect information.

• Cabannes et. al. ‘21, Solving N-player dynamic routing games with congestion: a mean field approach.

9.1.47 Mean Field Game : Linear-Quadratic

• Players are uniformly distributed and are then incentivized to gather at the same point (The lower the distanbce
wrt. the distribution mean position, the higher the reward). A mean-reverting term pushes the players towards
the distribution, a gaussian noise term perturbs them. The players’ actions alter their states linearly (alpha * a *
dt) and the cost thereof is quadratic (K * a^2 * dt), hence the name. There exists an exact, closed form solution
for the fully continuous version of this game.

• Research game.

• Mean-field (with a unique player).

• Explicit stochastic game (only for initial node).

• Perfect information.

• [Perrin & al. 2019 (https://arxiv.org/abs/2007.03458)]

9.1. Details 33

https://www2.cs.duke.edu/courses/spring07/cps296.3/littman94markov.pdf
https://arxiv.org/abs/1609.05559
https://arxiv.org/abs/1609.05559
https://arxiv.org/pdf/2110.11943.pdf

open_spiel Documentation

9.1.48 Morpion Solitaire (4D)

• A single player game where player aims to maximize lines drawn on a grid, under certain limitations.

• Uses tokens on a grid.

• Traditional game.

• Deterministic

• Perfect information.

• 1 player.

• Wikipedia

9.1.49 Negotiation

• Agents with different utilities must negotiate an allocation of resources.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• Lewis et al. ‘17, Cao et al. ‘18

9.1.50 Nim

• Two agents take objects from distinct piles trying to either avoid taking the last one or take it. Any positive
number of objects can be taken on each turn given they all come from the same pile.

• Traditional mathematical game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.51 Nine men’s morris

• Two players put and move stones on the board to try to form mills (three adjacent stones in a line) to capture the
other player’s stones.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

34 Chapter 9. Available games

https://en.wikipedia.org/wiki/Join_Five
https://arxiv.org/abs/1706.05125
https://arxiv.org/abs/1804.03980
https://en.wikipedia.org/wiki/Nim
https://en.wikipedia.org/wiki/Nine_men%27s_morris

open_spiel Documentation

9.1.52 Oh Hell

• A card game where players try to win exactly a declared number of tricks.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 3-7 players.

• Wikipedia

9.1.53 Oshi-Zumo

• Players must repeatedly bid to push a token off the other side of the board.

• Idiosyncratic format.

• Traditional game.

• Deterministic.

• Imperfect information.

• 2 players.

• Buro, 2004. Solving the oshi-zumo game Bosansky et al. ‘16, Algorithms for Computing Strategies in Two-
Player Simultaneous Move Games

9.1.54 Oware

• Players redistribute tokens from their half of the board to capture tokens in the opponent’s part of the board.

• Idiosyncratic format.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.55 Pathfinding

• Agents must move to their desitnation.

• Agents on a grid. Single-agent game is the classic examples from Sutton & Barto.

• Research game.

• Non-deterministic (in multiagent, collisions resolved by chance nodes).

• Perfect information.

• 1-10 players.

9.1. Details 35

https://en.wikipedia.org/wiki/Oh_Hell
https://link.springer.com/chapter/10.1007/978-0-387-35706-5_23
http://mlanctot.info/files/papers/aij-2psimmove.pdf
http://mlanctot.info/files/papers/aij-2psimmove.pdf
https://en.wikipedia.org/wiki/Oware

open_spiel Documentation

• Similar games appeared in Austerweil et al. ‘15, Greenwald & Hall ‘03, and Littman ‘01.

9.1.56 Pentago

• Players place tokens on the board, then rotate part of the board to a new orientation.

• Uses tokens on a grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1.57 Phantom Go

• Go, except the opponent’s stones are hidden. The analogue of Kriegspiel for Go.

• Research game.

• Deterministic.

• Imperfect information.

• 2 players.

• Cazenave ‘05, A Phantom Go Program

9.1.58 Phantom Tic-Tac-Toe

• Tic-tac-toe, except the opponent’s tokens are hidden. Designed as a simple, imperfect-information game.

• Uses tokens on a grid.

• Research game.

• Deterministic.

• Imperfect information.

• 2 players.

• Auger ‘11, Multiple Tree for Partially Observable Monte-Carlo Tree Search,Lisy ‘14, Alternative Selection Func-
tions for Information Set Monte Carlo Tree Search, Lanctot ‘13

9.1.59 Pig

• Each player rolls a dice until they get a 1 or they ‘hold’; the rolled total is added to their score.

• Dice game.

• Traditional game.

• Non-deterministic.

• Perfect information.

36 Chapter 9. Available games

http://miaoliu.scripts.mit.edu/SSS-16/wp-content/uploads/2016/01/paper.pdf
https://www.aaai.org/Papers/ICML/2003/ICML03-034.pdf
https://jmvidal.cse.sc.edu/library/littman01a.pdf
https://en.wikipedia.org/wiki/Pentago
https://link.springer.com/chapter/10.1007/11922155_9
https://hal.archives-ouvertes.fr/hal-00563480v2/document
https://core.ac.uk/download/pdf/81646968.pdf
https://core.ac.uk/download/pdf/81646968.pdf
http://mlanctot.info/files/papers/PhD_Thesis_MarcLanctot.pdf

open_spiel Documentation

• 2-10 players.

• Wikipedia

9.1.60 Prisoner’s Dilemma

• Players decide on whether to cooperate or defect given a situation with different payoffs.

• Simultaneous.

• Traditional game.

• Deterministic.

• Perfect Information.

• 2 players.

• Wikipedia

9.1.61 Poker (Hold ‘em)

• Players bet on whether their hand of cards plus some communal cards will form a special set.

• Cards with bidding.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 2-10 players.

• Wikipedia

• Implemented via ACPC.

• Known issues: see issues #778, #1033, and #1042.

9.1.62 Quoridor

• Each turn, players can either move their agent or add a small wall to the board.

• Idiosyncratic format.

• Modern game.

• Deterministic.

• Perfect information.

• 2-4 players. (Note, from Wikipedia: “Though it can be played with 3 players, it’s advised against. Since the 3rd
player doesn’t have player on the opposite side, they have an advantage.”)

• Wikipedia

• Known issues: see #1158.

9.1. Details 37

https://en.wikipedia.org/wiki/Pig_(dice_game)
https://en.wikipedia.org/wiki/Prisoner%27s_dilemma
https://en.wikipedia.org/wiki/Texas_hold_%27em
http://www.computerpokercompetition.org/
https://github.com/google-deepmind/open_spiel/issues/778
https://github.com/google-deepmind/open_spiel/issues/1033
https://github.com/google-deepmind/open_spiel/issues/1042
https://en.wikipedia.org/wiki/Quoridor
https://github.com/google-deepmind/open_spiel/issues/1158

open_spiel Documentation

9.1.63 Reconnaissance Blind Chess

• Chess with opponent’s pieces unknown, with sensing moves.

• Chess variant, invented by John Hopkins University Applied Physics Lab. Used in NeurIPS competition and
Hidden Information Game Competition.

• Deterministic.

• Imperfect information.

• 2 players.

• JHU APL Main site

• Markowitz et al. ‘18, On the Complexity of Reconnaissance Blind Chess

• Newman et al. ‘16, Reconnaissance blind multi-chess: an experimentation platform for ISR sensor fusion and
resource management

• Known issues: see #811.

9.1.64 Routing game

• Players choose at each node where they go. They have an origin, a destination and a departure time and choose
their route to minimize their travel time. Time spent on each link is a function of the number of players on the
link when the player reaches the link.

• Network with choice of route.

• Research game.

• Simultaneous.

• Deterministic.

• Perfect information.

• Any number of players.

• Cabannes et. al. ‘21, Solving N-player dynamic routing games with congestion: a mean field approach.

9.1.65 Sheriff

• Bargaining game.

• Deterministic.

• Imperfect information.

• 2 players.

• Good for correlated equilibria.

• Farina et al. ‘19, Correlation in Extensive-Form Games: Saddle-Point Formulation and Benchmarks.

• Based on the board game “Sheriff of Nottingham” (bbg)

38 Chapter 9. Available games

https://rbc.jhuapl.edu/
https://arxiv.org/abs/1811.03119
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9842/984209/Reconnaissance-blind-multi-chess--an-experimentation-platform-for-ISR/10.1117/12.2228127.short?SSO=1
https://www.spiedigitallibrary.org/conference-proceedings-of-spie/9842/984209/Reconnaissance-blind-multi-chess--an-experimentation-platform-for-ISR/10.1117/12.2228127.short?SSO=1
https://github.com/google-deepmind/open_spiel/issues/811
https://arxiv.org/pdf/2110.11943.pdf
https://papers.nips.cc/paper/9122-correlation-in-extensive-form-games-saddle-point-formulation-and-benchmarks.pdf
https://boardgamegeek.com/boardgame/157969/sheriff-nottingham

open_spiel Documentation

9.1.66 Slovenian Tarok

• Trick-based card game with bidding.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 3-4 players.

• Wikipedia

• Luštrek et al. 2003, A program for playing Tarok

9.1.67 Skat (simplified bidding)

• Each turn, players bid to compete against the other two players.

• Cards with bidding.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 3 players.

• Wikipedia

9.1.68 Solitaire (K+)

• A single-player card game.

• Card game.

• Traditional game.

• Non-deterministic.

• Imperfect information.

• 1 players.

• Wikipedia and Bjarnason et al. ‘07, Searching solitaire in real time

9.1.69 Tic-Tac-Toe

• Players place tokens to try and form a pattern.

• Uses tokens on a grid.

• Traditional game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1. Details 39

https://en.wikipedia.org/wiki/K%C3%B6nigrufen#Slovenia
https://pdfs.semanticscholar.org/a920/70fe11f75f58c27ed907c4688747259cae15.pdf
https://en.wikipedia.org/wiki/Skat_(card_game)
https://en.wikipedia.org/wiki/Klondike_(solitaire)
http://web.engr.oregonstate.edu/~afern/papers/solitaire.pdf
https://en.wikipedia.org/wiki/Tic-tac-toe

open_spiel Documentation

9.1.70 Tiny Bridge

• Simplified Bridge with fewer cards and tricks.

• Cards with bidding.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2, 4 players.

• See implementation for details.

9.1.71 Tiny Hanabi

• Simplified Hanabi with just two turns.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2-10 players.

• Foerster et al 2018, Bayesian Action Decoder for Deep Multi-Agent Reinforcement Learning

9.1.72 Trade Comm

• Players with different utilities and items communicate and then trade.

• Idiosyncratic format.

• Research game.

• Non-deterministic.

• Imperfect information.

• 2 players.

• A simple emergent communication game based on trading.

9.1.73 Ultimate Tic-Tac-Toe

• Players try and form a pattern in local boards and a meta-board.

• Uses tokens on a grid.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

40 Chapter 9. Available games

https://arxiv.org/abs/1811.01458
https://en.wikipedia.org/wiki/Ultimate_tic-tac-toe

open_spiel Documentation

9.1.74 Weighted Voting Games

• Classic coalitional game.

• Players each have a weight w_i, and there is a quota q.

• Denote p the binary vector representing a coalition over n players. The utility is 1 is p dot w >= q, 0 otherwise.

• n players.

• Chalkiadakis, Elkind, & Wooldridge ‘12

9.1.75 Y

• Players place tokens to try and connect sides of a triangular board.

• Tokens on hex grid.

• Modern game.

• Deterministic.

• Perfect information.

• 2 players.

• Wikipedia

9.1. Details 41

https://link.springer.com/book/10.1007/978-3-031-01558-8
https://en.wikipedia.org/wiki/Y_(game)

open_spiel Documentation

42 Chapter 9. Available games

CHAPTER

TEN

-RANK

OpenSpiel now supports using Alpha-Rank (“-Rank: Multi-Agent Evaluation by Evolution”, 2019) for both single-
population (symmetric) and multi-population games. Specifically, games can be specified via payoff tables (or tensors
for the >2 players case) as well as Heuristic Payoff Tables (HPTs).

The following presents several typical use cases for Alpha-Rank. For an example complete python script, refer to
open_spiel/python/egt/examples/alpharank_example.py.

10.1 Importing the Alpha-Rank module

from open_spiel.python.egt import alpharank
from open_spiel.python.egt import alpharank_visualizer

10.2 Running Alpha-Rank on various games

10.2.1 Example: symmetric 2-player game rankings

In this example, we run Alpha-Rank on a symmetric 2-player game (Rock-Paper-Scissors), computing and outputting
the rankings in a tabular format. We demonstrate also the conversion of standard payoff tables to Heuristic Payoff
Tables (HPTs), as both are supported by the ranking code.

Load the game
game = pyspiel.load_matrix_game("matrix_rps")
payoff_tables = utils.game_payoffs_array(game)

Convert to heuristic payoff tables
payoff_tables= [heuristic_payoff_table.from_matrix_game(payoff_tables[0]),

heuristic_payoff_table.from_matrix_game(payoff_tables[1].T)]

Check if the game is symmetric (i.e., players have identical strategy sets
and payoff tables) and return only a single-player’s payoff table if so.
This ensures Alpha-Rank automatically computes rankings based on the
single-population dynamics.
_, payoff_tables = utils.is_symmetric_matrix_game(payoff_tables)

Compute Alpha-Rank
(rhos, rho_m, pi, num_profiles, num_strats_per_population) = alpharank.compute(

payoff_tables, alpha=1e2)
(continues on next page)

43

https://www.nature.com/articles/s41598-019-45619-9
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/egt/examples/alpharank_example.py

open_spiel Documentation

(continued from previous page)

Report results
alpharank.print_results(payoff_tables, payoffs_are_hpt_format, pi=pi)

Output

Agent Rank Score
----- ---- -----
0 1 0.33
1 1 0.33
2 1 0.33

10.2.2 Example: multi-population game rankings

The next example demonstrates computing Alpha-Rank on an asymmetric 3-player meta-game, constructed by com-
puting payoffs for Kuhn poker agents trained via extensive-form fictitious play (XFP). Here we use a helper function,
compute_and_report_alpharank, which internally conducts the pre-processing and visualization shown in the pre-
vious example.

Load the game
payoff_tables = alpharank_example.get_kuhn_poker_data(num_players=3)

Helper function for computing & reporting Alpha-Rank outputs
alpharank.compute_and_report_alpharank(payoff_tables, alpha=1e2)

Output

Agent Rank Score
----- ---- -----
(2,3,3) 1 0.22
(3,3,3) 2 0.14
(3,2,3) 3 0.12
(2,2,3) 4 0.09
(3,1,3) 5 0.08
(2,1,3) 6 0.05
(1,2,3) 7 0.04
(2,3,1) 8 0.02
...

44 Chapter 10. -Rank

open_spiel Documentation

10.3 Visualizing and reporting results

This section provides details on various methods used for reporting the final Alpha-Rank results.

10.3. Visualizing and reporting results 45

open_spiel Documentation

10.3.1 Basic Ranking Outputs

The final rankings computed can be printed in a tabular manner using the following interface:

alpharank.print_results(payoff_tables, payoffs_are_hpt_format, pi=pi)

Output

Agent Rank Score
----- ---- -----
0 1 0.33
1 1 0.33
2 1 0.33

10.3.2 Markov Chain Visualization

One may visualize the Alpha-Rank Markov transition matrix as follows:

m_network_plotter = alpharank_visualizer.NetworkPlot(payoff_tables, rhos,
rho_m, pi,strat_labels,
num_top_profiles=8)

m_network_plotter.compute_and_draw_network()

Output

46 Chapter 10. -Rank

open_spiel Documentation

10.3.3 Alpha-sweep plots

One may choose to conduct a sweep over the ranking-intensity parameter, alpha (as opposed to choosing a fixed alpha).
This is, in general, useful for general games where bounds on payoffs may be unknown, and where the ranking computed
by Alpha-Rank should use a sufficiently high value of alpha (to ensure correspondence to the underlying Markov-Conley
chain solution concept). In such cases, the following interface can be used to both visualize the sweep and obtain the
final rankings computed:

alpharank.sweep_pi_vs_alpha(payoff_tables, visualize=True)

Output

10.3. Visualizing and reporting results 47

open_spiel Documentation

48 Chapter 10. -Rank

CHAPTER

ELEVEN

JULIA OPENSPIEL

We also provide a Julia wrapper for the OpenSpiel project. Most APIs are aligned with those in Python (some are
extended to accept AbstractArray and/or keyword arguments for convenience). See spiel.h for the full API de-
scription.

11.1 Install

For general usage, you can install this package in the Julia REPL with] add OpenSpiel. Note that this method only
supports the Linux platform and ACPC is not included. For developers, you need to follow the instructions bellow to
install this package:

1. Install Julia and dependencies. Edit open_spiel/scripts/global_variables.sh and set
OPEN_SPIELOPEN_SPIEL_BUILD_WITH_JULIA=ON (you may also turn on other options as you wish).
Then run ./install.sh. If you already have Julia installed on your system, make sure that it is visible in your
terminal and its version is v1.3 or later. Otherwise, Julia v1.3.1 will be automatically installed in your home dir
and a soft link will be created at /usr/local/bin/julia.

2. Build and run tests

./open_spiel/scripts/build_and_run_tests.sh

3. Install] dev ./open_spiel/julia (run in Julia REPL).

11.2 Known Problems

1. There’s a problem when building this package on Mac with XCode v11.4 or above (see discussions here). To
fix it, you need to install the latest libcxxwrap by following the instructions here after running ./install.
sh. Then make sure that the result of julia --project=./open_spiel/julia -e 'using CxxWrap;
print(CxxWrap.prefix_path())' points to the newly built libcxxwrap. After that, build and install this
package as stated above.

49

https://github.com/deepmind/open_spiel/pull/187#issuecomment-616540881
https://github.com/JuliaInterop/libcxxwrap-julia#building-libcxxwrap-julia

open_spiel Documentation

11.3 Example

Here we demonstrate how to use the Julia API to play one game:

using OpenSpiel

Here we need the StatsBase package for weighted sampling
using Pkg
Pkg.add("StatsBase")
using StatsBase

function run_once(name)
game = load_game(name)
state = new_initial_state(game)
println("Initial state of game[$(name)] is:\n$(state)")

while !is_terminal(state)
if is_chance_node(state)

outcomes_with_probs = chance_outcomes(state)
println("Chance node, got $(length(outcomes_with_probs)) outcomes")
actions, probs = zip(outcomes_with_probs...)
action = actions[sample(weights(collect(probs)))]
println("Sampled outcome: $(action_to_string(state, action))")
apply_action(state, action)

elseif is_simultaneous_node(state)
chosen_actions = [rand(legal_actions(state, pid-1)) for pid in 1:num_

→˓players(game)] # in Julia, indices start at 1
println("Chosen actions: $([action_to_string(state, pid-1, action) for (pid,␣

→˓action) in enumerate(chosen_actions)])")
apply_action(state, chosen_actions)

else
action = rand(legal_actions(state))
println("Player $(current_player(state)) randomly sampled action: $(action_

→˓to_string(state, action))")
apply_action(state, action)

end
println(state)

end
rts = returns(state)
for pid in 1:num_players(game)

println("Utility for player $(pid-1) is $(rts[pid])")
end

end

run_once("tic_tac_toe")
run_once("kuhn_poker")
run_once("goofspiel(imp_info=True,num_cards=4,points_order=descending)")

50 Chapter 11. Julia OpenSpiel

open_spiel Documentation

11.4 Q&A

1. What is StdVector?

StdVector is introduced in CxxWrap.jl recently. It is a wrapper of std::vector in the C++ side. Since that it
is a subtype of AbstractVector, most functions should just work out of the box.

2. 0-based or 1-based?

As this package is a low-level wrapper of OpenSpiel C++, most APIs are zero-based: for instance, the Player
id starts from zero. But note that some bridge types, like StdVector, implicitly convert between indexing
conventions, so APIs that use StdVector are one-based.

3. I can’t find the xxx function/type in the Julia wrapper/The program exits unexpectedly.

Although most of the functions and types should be exported, there is still a chance that some APIs are not well
tested. So if you encounter any error, please do not hesitate to create an issue.

11.4. Q&A 51

https://github.com/JuliaInterop/CxxWrap.jl

open_spiel Documentation

52 Chapter 11. Julia OpenSpiel

CHAPTER

TWELVE

ALPHAZERO

OpenSpiel includes three implementations of AlphaZero, two based on Tensorflow (one in Python and one in C++ using
Tensorflow C++ API), with a shared model written in TensorFlow. The other based on C++ Libtorch-base. This docu-
ment covers mostly the TF-based implementation and common components. For the Libtorch-based implementation,
see here.

Disclaimer: this is not the code that was used for the Go challenge matches or the AlphaZero paper results. It is a
re-implementation for illustrative purposes, and although it can handle games like Connect Four, it is not designed to
scale to superhuman performance in Go or Chess.

12.1 Background

AlphaZero is an algorithm for training an agent to play perfect information games from pure self-play. It uses Monte
Carlo Tree Search (MCTS) with the prior and value given by a neural network to generate training data for that neural
network.

Links to relevant articles/papers:

• AlphaGo Zero: Starting from scratch has an open access link to the AlphaGo Zero nature paper that describes
the model in detail.

• AlphaZero: Shedding new light on chess, shogi, and Go has an open access link to the AlphaZero science paper
that describes the training regime and generalizes to more games.

12.2 Overview:

The Python and C++ implementations are conceptually fairly similar, and have roughly the same components: actors
that generate data through self-play using MCTS with an evaluator that uses a neural network, a learner that updates
the network based on those games, and evaluators playing vs standard MCTS to gauge progress. Both write checkpoints
that can be played independently of the training setup, and logs that can be analyzed programmatically.

The Python implementation uses one process per actor/evaluator, doesn’t support batching for inference and does all
inference and training on the cpu. The C++ implementation, by contrast, uses threads, a shared cache, supports batched
inference, and can do both inference and training on GPUs. As such the C++ implementation can take advantage of
additional hardware and can train significantly faster.

53

https://github.com/deepmind/open_spiel/tree/master/open_spiel/algorithms/alpha_zero_torch
https://deepmind.com/blog/article/alphago-zero-starting-scratch
https://deepmind.com/blog/article/alphazero-shedding-new-light-grand-games-chess-shogi-and-go

open_spiel Documentation

12.2.1 Model

The model defined in open_spiel/python/algorithms/alpha_zero/model.py is used by both the python and C++ imple-
mentations. The C++ version wraps the exported tensorflow graph in open_spiel/algorithms/alpha_zero/vpnet.h, and
supports both inference and training.

The model defines three architectures in decreasing complexity:

• resnet: same as the AlphaGo/AlphaZero paper when set with width 256 and depth 20.

• conv2d: same as the resnet except uses a conv+batchnorm+relu instead of the residual blocks.

• mlp: same as conv2d except uses dense layers instead of conv, and drops batch norm.

The model is parameterized by the size of the observations and number of actions for the game you specify, so can play
any 2-player game. The conv2d and resnet models are restricted to games with a 2d representation (ie a 3d observation
tensor).

The models are all parameterized with a width and depth:

• The depth is the number of blocks in the torso, where the definition of a block varies by model. For a resnet it’s a
resblock which is two conv2ds, batch norms and relus, and an addition. For conv2d it’s a conv2d, a batch norm
and a relu. For mlp it’s a dense plus relu.

• The width is the number of filters for any conv2d and the number of hidden units for any dense layer.

The networks all give two outputs: a value and a policy, which are used by the MCTS evaluator.

12.2.2 MCTS

Monte Carlo Tree Search (MCTS) is a general search algorithm used to play many games, but first found success
playing Go back in ~2005. It builds a tree directed by random rollouts, and does usually uses UCT to direct the
exploration/exploitation tradeoff. For our use case we replace random rollouts with a value network. Instead of a
uniform prior we use a policy network. Instead of UCT we use PUCT.

We have implementations of MCTS in C++ and python.

12.2.3 MCTS Evaluator

Both MCTS implementations above have a configurable evaluator that returns the value and prior policy of a given
node. For standard MCTS the value is given by random rollouts, and the prior policy is uniform. For AlphaZero the
value and prior are given by a neural network evaluation. The AlphaZero evaluator takes a model, so can be used during
training or with a trained checkpoint for play with open_spiel/python/examples/mcts.py.

12.2.4 Actors

The main script launches a set of actor processes (Python) or threads (C++). The actors create two MCTS instances
with a shared evaluator and model, and play self-play games, passing the trajectories to the learner via a queue. The
more actors the faster it can generate training data, assuming you have sufficient compute to actually run them. Too
many actors for your hardware will mean longer for individual games to finish and therefore your data could be more
out of date with respect to the up to date checkpoint/weights.

54 Chapter 12. AlphaZero

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/alpha_zero/model.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/algorithms/alpha_zero/vpnet.h
https://github.com/deepmind/open_spiel/blob/master/open_spiel/algorithms/mcts.h
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/mcts.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/mcts.py

open_spiel Documentation

12.2.5 Learner

The learner pulls trajectories from the actors and stores them in a fixed size FIFO replay buffer. Once the replay buffer
has enough new data, it does an update step sampling from the replay buffer. It then saves a checkpoint and updates all
the actor’s models. It also updates a learner.jsonl file with some stats.

12.2.6 Evaluators

The main script also launches a set of evaluator processes/threads. They continually play games against a standard
MCTS+Solver to give an idea of how training is progressing. The MCTS opponents can be scaled in strength based on
the number of simulations they are given per move, so more levels means stronger but slower opponents.

12.2.7 Output

When running the algorithm a directory must be specified and all output goes there.

Due to the parallel nature of the algorithm writing logs to stdout/stderr isn’t very useful, so each actor/learner/evaluator
writes its own log file to the configured directory.

Checkpoints are written after every update step, mostly overwriting the latest one at checkpoint--1 but every
checkpoint_freq is saved at checkpoint-<step>.

The config file is written to config.json, to make the experiment more repeatable.

The learner also writes machine readable logs in the jsonlines format to learner.jsonl, which can be read with the
analysis library.

12.3 Usage:

12.3.1 Python

The code lives at open_spiel/python/algorithms/alpha_zero/.

The simplest example trains a tic_tac_toe agent for a set number of training steps:

python3 open_spiel/python/examples/tic_tac_toe_alpha_zero.py

Alternatively you can train on an arbitrary game with many more options:

python3 open_spiel/python/examples/alpha_zero.py --game connect_four --nn_model mlp --
→˓actors 10

12.3.2 C++

The code lives at open_spiel/algorithms/alpha_zero/ with an example executable at
open_spiel/examples/alpha_zero_example.cc.

Compiling it is now possible with the help of the tensorflow_cc project. TensorflowCC allows the usage of the Tensor-
Flow C++ API from outside the Tensorflow source directory.

For build instructions, please see open_spiel/algorithms/alpha_zero/README.md.

Although targets are built successfully, there are still some runtime issues. OpenSpiel Issue #172 has some information
that may help figure out how to fix them. Contributions are welcome.

12.3. Usage: 55

http://jsonlines.org/
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/alpha_zero/
https://github.com/deepmind/open_spiel/blob/master/open_spiel/algorithms/alpha_zero/
https://github.com/deepmind/open_spiel/blob/master/open_spiel/examples/alpha_zero_example.cc
https://github.com/FloopCZ/tensorflow_cc
https://github.com/deepmind/open_spiel/blob/master/open_spiel/algorithms/alpha_zero/README.md
https://github.com/deepmind/open_spiel/issues/172

open_spiel Documentation

12.3.3 Analysis

There’s an analysis library at open_spiel/python/algorithms/alpha_zero/analysis.py which reads the config.json and
learner.jsonl from an experiment (either python or C++), and graphs losses, value accuracy, evaluation results,
actor speed, game lengths, etc. It should be reasonable to turn this into a colab.

12.3.4 Playing vs checkpoints

The checkpoints are compatible between python and C++, and can be loaded by the model. You can try playing against
one directly with open_spiel/python/examples/mcts.py:

python3 open_spiel/python/examples/mcts.py --game=tic_tac_toe --player1=human --
→˓player2=az --az_path <path to your checkpoint directory>

56 Chapter 12. AlphaZero

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/algorithms/alpha_zero/analysis.py
https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/mcts.py

CHAPTER

THIRTEEN

THE CODE STRUCTURE

Generally speaking, the directories directly under open_spiel are C++ (except for integration_tests and
python). A similar structure is available in open_spiel/python, containing the Python equivalent code.

Some top level directories are special:

• open_spiel/integration_tests: Generic (python) tests for all the games.

• open_spiel/tests: The C++ common test utilities.

• open_spiel/scripts: The scripts useful for development (building, running tests, etc).

For example, we have for C++:

• open_spiel/: Contains the game abstract C++ API.

• open_spiel/games: Contains the games C++ implementations.

• open_spiel/algorithms: The C++ algorithms implemented in OpenSpiel.

• open_spiel/examples: The C++ examples.

• open_spiel/tests: The C++ common test utilities.

For Python you have:

• open_spiel/python/examples: The Python examples.

• open_spiel/python/algorithms/: The Python algorithms.

57

open_spiel Documentation

58 Chapter 13. The code structure

CHAPTER

FOURTEEN

C++ AND PYTHON IMPLEMENTATIONS.

Some objects (e.g. Policy, CFRSolver, BestResponse) are available both in C++ and Python. The goal is to be able
to use C++ objects in place of Python objects for most of the cases. In particular, for the objects that are well supported,
expect to have in the test for the Python object, a test checking that both the C++ and the Python implementation behave
the same.

59

open_spiel Documentation

60 Chapter 14. C++ and Python implementations.

CHAPTER

FIFTEEN

ADDING A GAME

We describe here only the simplest and fastest way to add a new game. It is ideal to first be aware of the general API
(see open_spiel/spiel.h).

1. Choose a game to copy from in open_spiel/games/ (or open_spiel/python/games/). Suggested games:
Tic-Tac-Toe and Breakthrough for perfect information without chance events, Backgammon or Pig for perfect
information games with chance events, Goofspiel and Oshi-Zumo for simultaneous move games, and Leduc
poker and Liar’s dice for imperfect information games. For the rest of these steps, we assume Tic-Tac-Toe.

2. Copy the header and source: tic_tac_toe.h, tic_tac_toe.cc, and tic_tac_toe_test.cc to new_game.
h, new_game.cc, and new_game_test.cc (or tic_tac_toe.py and tic_tac_toe_test.py).

3. Configure CMake:

• If you are working with C++: add the new game’s source files to open_spiel/games/CMakeLists.txt.

• If you are working with C++: add the new game’s test target to open_spiel/games/CMakeLists.txt.

• If you are working with Python: add the test to open_spiel/python/CMakeLists.txt and import it in
open_spiel/python/games/__init__.py

4. Update boilerplate C++/Python code:

• In new_game.h, rename the header guard at the the top and bottom of the file.

• In the new files, rename the inner-most namespace from tic_tac_toe to new_game.

• In the new files, rename TicTacToeGame and TicTacToeState to NewGameGame and NewGameState.

• At the top of new_game.cc, change the short name to new_game and include the new game’s header.

5. Update Python integration tests:

• Add the short name to the list of expected games in open_spiel/python/tests/pyspiel_test.py.

6. You should now have a duplicate game of Tic-Tac-Toe under a different name. It should build and the
test should run, and can be verified by rebuilding and running the example build/examples/example
--game=new_game.

7. Now, change the implementations of the functions in NewGameGame and NewGameState to reflect your new
game’s logic. Most API functions should be clear from the game you copied from. If not, each API function that
is overridden will be fully documented in superclasses in open_spiel/spiel.h.

8. To test the game as it is being built, you can play test the functionality interactively using ConsolePlayTest in
open_spiel/tests/console_play_test.h. At the very least, the test should include some random simula-
tion tests (see other game’s tests for an example).

9. Run your code through a linter so it conforms to Google’s style guides. For C++ use cpplint. For Python, use
pylint with the pylintrc from the Google style guide. There is also YAPF for Python as well.

10. Once done, rebuild and rerun the tests to ensure everything passes (including your new game’s test!).

61

https://google.github.io/styleguide/
https://pypi.org/project/cpplint/
https://pypi.org/project/pylint/
https://google.github.io/styleguide/pyguide.html
https://github.com/google/yapf/

open_spiel Documentation

11. Add a playthrough file to catch regressions:

• Run ./open_spiel/scripts/generate_new_playthrough.sh new_game to generate a random
game, to be used by integration tests to prevent any regression. open_spiel/integration_tests/
playthrough_test.py will automatically load the playthroughs and compare them to newly generated
playthroughs.

• If you have made a change that affects playthroughs, run ./scripts/regenerate_playthroughs.sh to
update them.

62 Chapter 15. Adding a game

CHAPTER

SIXTEEN

CONDITIONAL DEPENDENCIES

The goal is to make it possible to optionally include external dependencies and build against them. The setup was
designed to met the following needs:

• Single source of truth: We want a single action to be sufficient to manage the conditional install and build.
Thus, we use bash environment variables, that are read both by the install script (install.sh) to know whether
we should clone the dependency, and by CMake to know whether we should include the files in the target. Tests
can also access the bash environment variable.

• Light and safe defaults: By default, we exclude the dependencies to diminish install time and compilation time.
If the bash variable is unset, we download the dependency and we do not build against it.

• Respect the user-defined values: The global_variables.sh script, which is included in all the scripts that
needs to access the constant values, do not override the constants but set them if and only if they are undefined.
This respects the user-defined values, e.g. on their .bashrc or on the command line.

When you add a new conditional dependency, you need to touch:

• the root CMakeLists.txt to add the option, with an OFF default

• add the option to scripts/global_variables.sh

• change install.sh to make sure the dependency is installed

• use constructs like if (${OPEN_SPIEL_BUILD_WITH_HANABI}) in CMake to optionally add the targets to
build.

63

open_spiel Documentation

64 Chapter 16. Conditional dependencies

CHAPTER

SEVENTEEN

DEBUGGING TOOLS

For complex games it may be tricky to get all the details right. Reading through the playthrough (or visually inspecting
random games via the example) is the first step in verifying the game mechanics. You can visualize small game trees
using open_spiel/python/examples/treeviz_example.py or for large games there is an interactive viewer for OpenSpiel
games called SpielViz.

65

https://github.com/deepmind/open_spiel/blob/master/open_spiel/python/examples/treeviz_example.py
https://github.com/michalsustr/spielviz

open_spiel Documentation

66 Chapter 17. Debugging tools

CHAPTER

EIGHTEEN

ADDING GAME-SPECIFIC FUNCTIONALITY

OpenSpiel focuses on maintaining a general API to an underlying suite of games, but sometimes it is convenient to
work on specific games. In this section, we describe how to get (or set) game-specific information from/to the generic
state objects, and how to expose these functions to python.

Suppose, for example, we want to look at (or set) the private cards in a game of Leduc poker. We will use an example
based on this this commit.

1. First, locate the game you want to access. The game implementations are in the games/ subdirectory and have
two main files: e.g. leduc_poker.h (header) and leduc_poker.cc (implementation).

2. For simple accessor methods that just return the information and feel free have the full implementation to the
game’s header file (e.g. LeducState::GetPrivateCards). You can also declare the function in the header
and provide the implementation in source file (e.g. LeducPoker::SetPrivateCards).

3. That’s it for the core game logic. To expose these methods to Python, add them to the Python module (via
pybind11). Some games already have game-specific functionality, so if a files named games_leduc_poker.h
and games_leduc_poker.cc exist within python/pybind11, add to them (skip to Step 5).

4. If the games-specific files do not exist for your game of interest, then:

• Add the files. Copy one of the other ones, adapt the names, and remove most of the bindings code.

• Add the new files to the PYTHON_BINDINGS list in python/CMakeFiles.txt.

• Modify pyspiel.cc: include the header at the top, and call the init function at the bottom.

5. Add the custom methods to the game-specific python bindings (games_leduc_poker.cc, i.e.
LeducPoker::GetPrivateCards and LeducPoker::SetPrivateCards). For simple types, this should be
relatively straight-forward; you can see how by looking at the other game-specific functions. For complex types,
you may have to bind additional code (see e.g. games_backgammon.cc). If it is unclear, do not hesitate to ask,
but also please check the pybind11 documentation.

6. Add a simple test to python/games_sim_test.py to check that it worked. For inspiration, see e.g.
test_leduc_get_and_set_private_cards.

67

https://github.com/deepmind/open_spiel/commit/4cd1e5889e447d285eb3f16901ccab5c14e62187
https://pybind11.readthedocs.io/en/stable/

open_spiel Documentation

68 Chapter 18. Adding Game-Specific Functionality

CHAPTER

NINETEEN

LANGUAGE APIS

There are currently four other language APIs that expose functionality from the C++ core.

• Python.

• Julia

• Go (experimental)

• Rust (experimental)

69

https://github.com/deepmind/open_spiel/tree/master/open_spiel/python
https://github.com/deepmind/open_spiel/tree/master/open_spiel/julia
https://github.com/deepmind/open_spiel/tree/master/open_spiel/go
https://github.com/deepmind/open_spiel/tree/master/open_spiel/rust

open_spiel Documentation

70 Chapter 19. Language APIs

CHAPTER

TWENTY

GUIDELINES

Above all, OpenSpiel is designed to be easy to install and use, easy to understand, easy to extend (“hackable”), and
general/broad. OpenSpiel is built around two major important design criteria:

• Keep it simple. Simple choices are preferred to more complex ones. The code should be readable, usable, ex-
tendable by non-experts in the programming language(s), and especially to researchers from potentially different
fields. OpenSpiel provides reference implementations that are used to learn from and prototype with, rather
than fully-optimized / high-performance code that would require additional assumptions (narrowing the scope /
breadth) or advanced (or lower-level) language features.

• Keep it light. Dependencies can be problematic for long-term compatibility, maintenance, and ease-of- use.
Unless there is strong justification, we tend to avoid introducing dependencies to keep things easy to install and
more portable.

71

open_spiel Documentation

72 Chapter 20. Guidelines

CHAPTER

TWENTYONE

SUPPORT EXPECTATIONS

We, the OpenSpiel authors, definitely engage in supporting the community. As it can be time-consuming, we try to find
a good balance between ensuring we are responsive and being able to continue to do our day-to-day work and research.

Generally speaking, if you are willing to get a specific feature implemented, the most effective way is to implement it
and send a Pull Request. For large changes, or ones involving design decisions, open a bug to check the idea is ok first.

The higher the quality, the easier it will be to be accepted. For instance, following the C++ Google style guide and
Python Google style guide will help with the integration.

As examples, MacOS support, Window support, example improvements, various bug-fixes or new games has been
straightforward to be included and we are very thankful to everyone who helped.

21.1 Bugs

We aim to answer bugs at a reasonable pace, several times a week. However, for bugs involving large changes (e.g.
adding new games, adding public state supports) we cannot commit to implementing it and encourage everyone to
contribute directly.

21.2 Pull requests

You can expect us to answer/comment back and you will know from the comment if it will be merged as is or if it will
need additional work.

For pull requests, they are merged as batches to be more efficient, at least every two weeks (for bug fixes, it will likely
be faster to be integrated). So you may need to wait a little after it has been approved to actually see it merged.

73

https://google.github.io/styleguide/cppguide.html
http://google.github.io/styleguide/pyguide.html

open_spiel Documentation

74 Chapter 21. Support expectations

CHAPTER

TWENTYTWO

ROADMAP AND CALL FOR CONTRIBUTIONS

Contributions to this project must be accompanied by a Contributor License Agreement (CLA). See CONTRIBUT-
ING.md for the details.

Here, we outline our intentions for the future, giving an overview of what we hope to add over the coming years. We
also suggest a number of contributions that we would like to see, but have not had the time to add ourselves.

Before making a contribution to OpenSpiel, please read the guidelines. We also kindly request that you contact us
before writing any large piece of code, in case (a) we are already working on it and/or (b) it’s something we have
already considered and may have some design advice on its implementation. Please also note that some games may
have copyrights which might require legal approval. Otherwise, happy hacking!

The following list is both a Call for Contributions and an idealized road map. We certainly are planning to add some
of these ourselves (and, in some cases already have implementations that were just not tested well enough to make the
release!). Contributions are certainly not limited to these suggestions!

• Checkers / Draughts. This is a classic game and an important one in the history of game AI (”Checkers is
solved”).

• Chinese Checkers / Halma. Chinese Checkers is the canonical multiplayer (more than two player) perfect
information game. Currently, OpenSpiel does not contain any games in this category.

• Deep TreeStrap. An implementation of TreeStrap (see Bootstrapping from Game Tree Search), except with a
DQN-like replay buffer, storing value targets obtained from minimax searches. We have an initial implementa-
tion, but it is not yet ready for release. We also hope to support PyTorch for this algorithm as well.

• Deep Regret Minimization with Advantage Baselines and Model-free Learning (DREAM). This is a model-
free technique based on Monte Carlo CFR with function approximation, that has been applied to Poker. (Ref)

• Double Neural Counterfactual Regret Minimization. This is a technique similar to Regression CFR that uses
a robust sampling technique and a new network architecture that predicts both the cumulative regret and the
average strategy. (Ref)

• Differentiable Games and Algorithms. For example, Symplectic Gradient Adjustment (Ref).

• Emergent Communication Algorithms. For example, RIAL and/or DIAL and CommNet.

• Emergent Communication Games. Referential games such as the ones in Ref1, Ref2, Ref3.

• Extensive-form Evolutionary Dynamics. There have been a number of different evolutionary dynamics sug-
gested for the sequential games, such as state-coupled replicator dynamics (Ref), sequence-form replicator dy-
namics (Ref1, Ref2), sequence-form Q-learning (Ref), and the logit dynamics (Ref).

• General Games Wrapper. There are several general game engine languages and databases of general games
that currently exist, for example within the general game-playing project and the Ludii General Game System.
A very nice addition to OpenSpiel would be a game that interprets games represented in these languages and
presents them as OpenSpiel games. This could lead to the potential of evaluating learning agents on hundreds to
thousands of games.

75

https://github.com/deepmind/open_spiel/blob/master/CONTRIBUTING.md
https://github.com/deepmind/open_spiel/blob/master/CONTRIBUTING.md
https://science.sciencemag.org/content/317/5844/1518
https://science.sciencemag.org/content/317/5844/1518
https://en.wikipedia.org/wiki/Chinese_checkers
https://www.cse.unsw.edu.au/~blair/pubs/2009VenessSilverUtherBlairNIPS.pdf
https://arxiv.org/abs/2006.10410
https://arxiv.org/abs/1812.10607
https://arxiv.org/abs/1802.05642
https://arxiv.org/abs/1605.06676
https://arxiv.org/abs/1605.07736
https://arxiv.org/abs/1612.07182
https://arxiv.org/abs/1710.06922
https://arxiv.org/abs/1705.11192
https://dl.acm.org/citation.cfm?id=1558120
https://arxiv.org/abs/1304.1456
http://mlanctot.info/files/papers/aamas14sfrd-cfr-kuhn.pdf
https://dl.acm.org/citation.cfm?id=2892753.2892835
https://dl.acm.org/citation.cfm?id=3015889
http://www.ggp.org/
http://www.ludii.games/index.html

open_spiel Documentation

• Go API. We currently have an experimental Go API similar to the Python API. It is exposed using cgo via a C
API much like the CFFI Python bindings from the Hanabi Learning Environment. It is very basic, only exposing
the games. It would be nice to have a few example algorithms and/or utilities written in go.

• Opponent Modeling / Shaping Algorithms. For example, DRON, LOLA, and Stable Opponent Shaping.

• Rust API. We currently have an experimental Rust API. It is exposed via a C API much like the Go API. It is
very basic, only exposing the games. It would be nice to have a few example algorithms and/or utilities written
in Rust.

• Sequential Social Dilemmas. Sequential social dilemmas, such as the ones found in Ref1, Ref2 . Wolfpack
could be a nice one, since pursuit-evasion games have been common in the literature (Ref). Also the coin games
from Ref1 and Ref2, and Clamity, Cleanup and/or Harvest from Ref3 Ref4.

• Structured Action Spaces. Currently, actions are integers between 0 and some value. There is no easy way to
interpret what each action means in a game-specific way. Nor is there any way to easily represent a composite
action in terms of its parts. A structured action space could represent actions as a sequence of values (like
information states and observations– and can also include shapes) which can be learned instead of mappings to
flat numbers. Then, each game could have a mapping from the structured action to the action taken.

• TF_Trajectories. The source code currently includes a batch inference for running a batch of episodes using
Tensorflow directly from C++ (in contrib/). It has not yet been tested with CMake and public Tensorflow. We
would like to officially support this and move it into the core library.

• Visualizations of games. There exists an interactive viewer for OpenSpiel games called SpielViz. Contributions
to this project, and more visualization tools with OpenSpiel, are welcome.

• Windows support. Native Windows support was added in early 2022, but remains experimental and only via
building from source. It would be nice to have Github Actions CI support on Windows to ensure that Windows
support is actively maintained, and eventually support installing OpenSpiel via pip on Windows as well.

76 Chapter 22. Roadmap and Call for Contributions

https://golang.org/
https://github.com/deepmind/hanabi-learning-environment
https://arxiv.org/abs/1609.05559
https://arxiv.org/abs/1709.04326
https://arxiv.org/abs/1811.08469
https://www.rust-lang.org/
https://arxiv.org/abs/1702.03037
https://arxiv.org/abs/1707.06600
http://web.media.mit.edu/~cynthiab/Readings/tan-MAS-reinfLearn.pdf
https://arxiv.org/abs/1707.01068
https://arxiv.org/abs/1709.04326
https://arxiv.org/abs/1812.07019
https://arxiv.org/abs/1810.08647
https://github.com/michalsustr/spielviz

CHAPTER

TWENTYTHREE

USING OPENSPIEL AS A C++ LIBRARY

OpenSpiel has been designed as a framework: a suite of games, algorithms, and tools for research in reinforcement
learning and search in games. However, there are situations where one may only want or need a single game/algorithm
or small subset from this collection, or a research experiment does not require modifying or otherwise interacting very
closely with OpenSpiel other than strictly calling/using it.

In cases like this, it might be nice to use OpenSpiel as a library rather than a framework. This has the benefit of not
forcing the use of certain tools like CMake or having to continually recompile OpenSpiel when doing your research.

Luckily, this is easy to achieve with OpenSpiel: you simply need to build it as a shared library once, and then load it
dynamically at runtime. This page walks through how to do this assuming a bash shell on Linux, but is very similar on
MacOS or for other shells.

23.1 Install Dependencies

The dependencies of OpenSpiel need to be installed before it can be used as a library. On MacOS and Debian/Ubuntu
Linux, this is often simply just running ./install.sh. Please see the installation from source instructions for more
details.

23.2 Compiling OpenSpiel as a Shared Library

To build OpenSpiel as a shared library, simply run:

mkdir build
cd build
BUILD_SHARED_LIB=ON CXX=clang++ cmake -DPython3_EXECUTABLE=$(which python3) -DCMAKE_CXX_
→˓COMPILER=${CXX} ../open_spiel
make -j$(nproc) open_spiel

This produces a dynamically-linked library libopen_spiel.so (or lib_openspiel.dylib on MacOS) in build/
that can be linked against and loaded dynamically at run-time.

Suppose OpenSpiel was installed in $HOME/open_spiel. The following line adds the necessary environment variable
to let the shell know where to find libopen_spiel.so at run-time:

export LD_LIBRARY_PATH="${HOME}/open_spiel/build"

You might want to add this line to your $HOME/.bash_profile to avoid having to do it every time you load the
library. Of course, if you are already using LD_LIBRARY_PATH for something else, then you need to add ${HOME}/
open_spiel/build to it (space-separated paths).

77

https://github.com/deepmind/open_spiel/blob/master/docs/install.md#installation-from-source

open_spiel Documentation

23.3 Compiling and Running the Example

cd ../open_spiel/examples
clang++ -I${HOME}/open_spiel -I${HOME}/open_spiel/open_spiel/abseil-cpp \

-std=c++17 -o shared_library_example shared_library_example.cc \
-L${HOME}/open_spiel/build -lopen_spiel

The first two flags are the include directory paths and the third is the link directory path. The -lopen_spiel instructs
the linker to link against the OpenSpiel shared library.

That’s it! Now you can run the example using:

./shared_library_example breakthrough

You should also be able to register new games externally without the implementation being within OpenSpiel nor built
into the shared library, though we are always interested in growing the library and recommend you contact us about
contributing any new games to the suite.

78 Chapter 23. Using OpenSpiel as a C++ Library

CHAPTER

TWENTYFOUR

AUTHORS

Names are ordered lexicographically. Typo or similar contributors are omitted.

24.1 OpenSpiel contributors

• Bart De Vylder

• Edward Hughes

• Edward Lockhart locked@google.com

• Daniel Hennes

• David Ding

• Dustin Morrill

• Elnaz Davoodi

• Finbarr Timbers

• Ivo Danihelka

• Jean-Baptiste Lespiau jblespiau@google.com

• Janos Kramar

• Jonah Ryan-Davis

• Julian Schrittwieser

• Julien Perolat

• Karl Tuyls

• Manuel Kroiss

• Marc Lanctot lanctot@google.com

• Matthew Lai

• Michal Sustr michal.sustr@aic.fel.cvut.cz

• Raphael Marinier

• Paul Muller

• Ryan Faulkner

• Satyaki Upadhyay

• Sebastian Borgeaud

79

mailto:locked@google.com
mailto:jblespiau@google.com
mailto:lanctot@google.com
mailto:michal.sustr@aic.fel.cvut.cz

open_spiel Documentation

• Sertan Girgin

• Shayegan Omidshafiei

• Srinivasan Sriram

• Thomas Anthony

• Thomas Köppe

• Timo Ewalds tewalds@google.com

• Vinicius Zambaldi vzambaldi@google.com

24.2 OpenSpiel with Swift for Tensorflow (now removed)

• James Bradbury jekbradbury@google.com

• Brennan Saeta saeta@google.com

• Dan Zheng danielzheng@google.com

24.3 External contributors

See https://github.com/deepmind/open_spiel/graphs/contributors.

80 Chapter 24. Authors

mailto:tewalds@google.com
mailto:vzambaldi@google.com
mailto:jekbradbury@google.com
mailto:saeta@google.com
mailto:danielzheng@google.com

	What is OpenSpiel?
	Installation
	Python-only installation via pip
	Python-only installation via pip (from source).

	Installation from Source
	Summary
	Installing via Docker
	Running the first examples
	Detailed steps
	Configuring conditional dependencies
	Installing system-wide dependencies
	Installing Python dependencies
	Required dependencies
	Optional dependencies

	Building and running tests
	Setting Your PYTHONPATH environment variable

	First examples
	Concepts
	The tree representation

	Loading a game
	Creating sequential games from simultaneous games

	Playing a trajectory
	OpenSpiel Core API Reference
	Core Functions
	State methods
	Game methods

	Available algorithms
	Available games
	Details
	2048
	Amazons
	Atari
	Backgammon
	Bargaining
	Battleship
	Blackjack
	Block Dominoes
	Breakthrough
	Bridge
	(Uncontested) Bridge bidding
	Catch
	Checkers
	Cliff Walking
	Clobber
	Coin Game
	Colored Trails
	Connect Four
	Cooperative Box-Pushing
	Chess
	Dots and Boxes
	Crazy Eights
	Dark Hex
	Deep Sea
	Dou Dizhu
	Euchre
	First-price Sealed-Bid Auction
	Gin Rummy
	Go
	Goofspiel
	Hanabi
	Havannah
	Hearts
	Hex
	Kriegspiel
	Kuhn poker
	Laser Tag
	Leduc poker
	Lewis Signaling
	Liar’s Dice
	Liar’s Poker
	Mensch Aergere Dich Nicht
	Mancala
	Markov Soccer
	Matching Pennies (Three-player)
	Mean Field Game : routing
	Mean Field Game : Linear-Quadratic
	Morpion Solitaire (4D)
	Negotiation
	Nim
	Nine men’s morris
	Oh Hell
	Oshi-Zumo
	Oware
	Pathfinding
	Pentago
	Phantom Go
	Phantom Tic-Tac-Toe
	Pig
	Prisoner’s Dilemma
	Poker (Hold ‘em)
	Quoridor
	Reconnaissance Blind Chess
	Routing game
	Sheriff
	Slovenian Tarok
	Skat (simplified bidding)
	Solitaire (K+)
	Tic-Tac-Toe
	Tiny Bridge
	Tiny Hanabi
	Trade Comm
	Ultimate Tic-Tac-Toe
	Weighted Voting Games
	Y

	α-Rank
	Importing the Alpha-Rank module
	Running Alpha-Rank on various games
	Example: symmetric 2-player game rankings
	Example: multi-population game rankings

	Visualizing and reporting results
	Basic Ranking Outputs
	Markov Chain Visualization
	Alpha-sweep plots

	Julia OpenSpiel
	Install
	Known Problems
	Example
	Q&A

	AlphaZero
	Background
	Overview:
	Model
	MCTS
	MCTS Evaluator
	Actors
	Learner
	Evaluators
	Output

	Usage:
	Python
	C++
	Analysis
	Playing vs checkpoints

	The code structure
	C++ and Python implementations.
	Adding a game
	Conditional dependencies
	Debugging tools
	Adding Game-Specific Functionality
	Language APIs
	Guidelines
	Support expectations
	Bugs
	Pull requests

	Roadmap and Call for Contributions
	Using OpenSpiel as a C++ Library
	Install Dependencies
	Compiling OpenSpiel as a Shared Library
	Compiling and Running the Example

	Authors
	OpenSpiel contributors
	OpenSpiel with Swift for Tensorflow (now removed)
	External contributors

